
PyPlotter
A Python/Jython Graph Plotting Package

Manual

Eckhart Arnold

September, 6th 2015

Contents

1 Introduction 2

2 License 2

3 Screenshots 3

4 Quick Tutorial 3
4.1 Example 1: Plotting a Graph 4
4.2 Example 2: Plotting a simplex diagram 4

5 Reference 5
5.1 Overview . 5
5.2 Class Graph.Cartesian . 6
5.3 Class Simplex.Diagram . 9

6 Implementing a new device driver for PyPlotter 11

1

1 Introduction

PyPlotter is a 2D graph plotting package for Python and Jython (the java
version of Python). It contains classes for drawing graphs on a cartesian co-
ordinate plain (with linar or logarithmic scale) and for plotting 2D simplex
diagrams. PyPlotter supports different GUI libraries and can easily adapted
to other GUIs or output devices by implementing a very simple driver in-
terface. Currently (Version 0.9.2), tk, gtk, qt, wxWidgets, java awt and
postscript are supported as output devices.

Since Version 0.9.2 PyPlotter is Python 3 compatible. However, the
drivers gtkGfx.py and wxGfx.py are not (yet) Python 3 compatible.

2 License

The MIT License (MIT)
Copyright (c) 2004 Eckhart Arnold (eckhart arnold@yahoo.de,

www.eckhartarnold.de)
Permission is hereby granted, free of charge, to any person obtaining a

copy of this software and associated documentation files (the ”Software”),
to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

2

3 Screenshots

Here are two sample screenshots form a program using PyPlotter:

4 Quick Tutorial

While the classes Graph.Cartesian and Simplex.Diagram are quite versatile,
it was a major aim of their development to make the usage for beginners
as simple as possible. To show you how to use these classes, this tutorial
contains two commented example programs.

3

4.1 Example 1: Plotting a Graph

In order to see the results of this example, either run the file “Example1.py”
from the PyPlotter directory or enter the following lines at the python com-
mand prompt.

1: import math

2: from PyPlotter import tkGfx as GfxDriver # ’awtGfx’ for jython

3: from PyPlotter import Graph, Gfx

4:

5: gfx = GfxDriver.Window(title="Function Plotter")

6: gr = Graph.Cartesian(gfx, -4.0, -2.0, 4.0, 2.0)

7: gr.addPen("sin(x)", Gfx.RED_PEN)

8: for x in gr.xaxisSteps(-4.0, 4.0):

9: gr.addValue("sin(x)", x, math.sin(x))

10: gfx.waitUntilClosed()

Thats all! If everything went right you should have seen a nice sine curve
on your display. Here is an explanation of what the program does. Line 5
opens a window for graphical output. Then a new cartesian graph is being
created in this window. In line 7 a new pen is added to the graph. Before you
can draw anything onto the graph, you have to add one or more pens. Every
pen is identified by its unique name. By default the graph as a caption where
all pens are listed by their names. To actually draw something on the graph,
you have to add one or more coordinate pairs to the graph with a given pen.
The coordinate pairs of a pen will then be connected with a continuous line
in the order they where added to the graph. This is done in line 8 and 9. In
line 8 the method xaxisSteps is called, which returns a list of x values for a
given range, each of which corresponds to exactly one pixel on the screen.

Since Version 0.8.7 of PyPlotter the same can be done even simpler:

1: import math

2: from PyPlotter import Graph

3: gr = Graph.Cartesian(Graph.AUTO_GFX, -4.0, -2.0, 4.0, 2.0)

4: for x in gr.xaxisSteps(-4.0, 4.0):

5: gr.addValue("sin(x)", x, math.sin(x))

6: gr.gfx.waitUntilClosed()

4.2 Example 2: Plotting a simplex diagram

Here is a short code snipplet to demonstrate the use of a simplex diagram. For
the sake of brevity, the actual population dynamical function is not contained.
See file “Example2.py” for the full program.

4

1: from PyPlotter import tkGfx as GfxDriver

2: from PyPlotter import Simplex

3:

4: gfx = GfxDriver.Window(title="Demand Game")

5: dynamicsFunction = lambda p: PopulationDynamics(p,DemandGame,

6: e=0.0,noise=0.0)

7: diagram = Simplex.Diagram(gfx, dynamicsFunction, "Demand Game",

8: "Demand 1/3", "Demand 2/3", "Demand 1/2")

9: diagram.show()

10: gfx.waitUntilClosed()

In order to draw a simplex diagram, you need to instantiate class Sim-
plex.Diagram (line 7) with a suitable population dynamical function. Class
Simplex.Diagram is specifically designed for visualizing population dynam-
ics. If you want to use simplex diagrams for another purpose, you should use
the lower level class Simplex.Plotter instead. The simplex diagram will not
be drawn, unless the show method of class Simplex.Diagram is called, as it
is done in line 9 of this example.

5 Reference

This reference of the PyPlotter package does only cover the most high level
classes and functions of PyPlotter. For a description of the lower level classes
and functions, see the doc strings is the source code.

5.1 Overview

PyPlotter basically consists of two parts, a front end part and a back end
part. The front end part comprises the high level classes to plot cartesian
graphs or simplex diagrams. These are the class Cartesian from the Graph
module and class Diagram from the Simplex module. The backend part
is a simple driver interface that is defined in the Gfx module. There exist
several implementations of this driver interface for different graphical user
interfaces. They are located in the modules named **Gfx.

Package PyPlotter consists of the following Modules:

Compatibility A helper module to ensure compatibility with different
Python versions (Verions 2.1 through to Version 2.4) as well as com-
patibility with Jython 2.1 .

5

Colors A helper module for dealing with colors. If contains a list of well
distinguishable colors (useful if drawing many graphs on one single
plain) and a few filter functions that help assigning similar color shades
to graphs that belong to the same of several groups.

Gfx This module defines the driver interface (class Driver). It also con-
tains class Pen to store a set of graphical attributes such as color, line
width etc.

**Gfx These modules contain implementations of Gfx.Driver for different
GUIs. There are drivers for the following GUI toolkits:

• tkGfx for the tkinter GUI toolkit that comes with the Python
standard distribution.

• qtGfx for the qt GUI toolkit (www.riverbankcomputing.co.uk/
software/pyqt/). qtGfx tries to import qt version 4, but falls
back on version 3, if version 4 of qt is not present.

• wxGfx for the wxWidgets GUI toolkit (www.wxwidgets.org).

• gtkGfx for the gtk GUI toolkit (www.pygtk.org).

• awtGfx for the Java awt/swing GUI toolkit under Jython, the
Python version running under the Java JVM.

• tt psGfx for postscript output that can be written to a file.

Graph Contains the high level class Cartesian for drawing graphs on a
cartesian plain. It also contains a number of intermediate level classes
for mapping virtual to screen coordinates etc.

Simplex Contains the high level class Diagram for drawing simplex diagrams
of population dynamics. Within in this module also some intermediate
classes for simplex drawing and coordinate transformation are imple-
mented.

5.2 Class Graph.Cartesian

Class Graph.Cartesian is versatile high level class for drawing graphs on
a cartesian plain. It supports linear and logarithmic scales and automatic
adjustment of the coordinate range as well as automatic captioning.

init (self, gfx, x1, y1, x2, y2,
title = “Graph”, xaxis=”X”, yaxis=”Y”,
styleFlags = DEFAULT STYLE,

6

axisPen = Gfx.BLACK PEN, labelPen = Gfx.BLACK PEN,
titlePen = Gfx.BLACK PEN, captionPen = Gfx.BLACK PEN,
backgroundPen = Gfx.WHITE PEN,
region = REGION FULLSCREEN)

Initializes the class with the following parameters:

gfx Gfx.Driver: The Gfx drivers used for drawing the graph. Use
AUTO PEN if you want the Graph.Cartesian object to find a
suitable driver (depending on the installed widget toolkits) on its
own.

x1,y1,x2,y2 floats: Coordinate range.

title string: Title string.

xaxis, yaxis strings: Axis descriptions.

styleFlags integer: Interpreted as a bitfield of flags that define the
style of the graph. The following flags can be set:

AXISES, AXIS DIVISION, FULL GRID Draw axises,
axis divisions and (or) a full grid.

LABELS, CAPTION, TITLE Draw axis labels, a caption
with descriptions (generated from the pen names) below the
graph, a title above the graph.

SHUFFLE DRAW, EVADE DRAW Two different algo-
rithms to allow for the visibility of overlapping graphs.

LOG X, LOG Y Use a logarithmic scale for the x or y axis re-
spectively.

KEEP ASPECT Keep the aspect ratio of the coordinates.

AUTO ADJUST Automatically adjust the range of the graph
when a point is added that falls outside the current range.

axisPen, labelPen, titlePen, captionPen, backgroundPen
Gfx.Pen: Pens (sets of graphical attributes) for the respective
elements of the graph.

region 4-tuple of floats. The part of the screen that is used for the
graph. Example: (0.05, 0.05, 0.95, 0.95) would leave a border of
5 % of the screen size on each side.

adjustRange (self, x1, y1, x2, y2) - Adjusts the range of the coordinate
plane.

7

setStyle (self, styleFlags=None, axisPen=None,
labelPen=None, titlePen=None, captionPen=None,
backgroundPen = None) - Changes the style of the graph. Only pa-
rameters that are not None will be changed.

setTitle (self, title) - Changes the title of the graph.

setLabels (self, xaxis=None, yaxis=None) - Changes the labels of the
graph.

resizedGfx (self) - Takes notice of a resized window.

changeGfx (self, gfx) - Switch to another device context. This can be useful
if you want to draw the current graph into a buffered image that you
want to save on a disk. In this case you have to create the buffered
image, create the Gfx driver for your buffered image, call changeGfx
and then redraw. After that you can call changeGfx to switch back to
the former output device.

redrawGraph (self) - Redraws the graph, but not the caption, title or
labels.

redrawCaption (self) - Redraw only the caption of the graph.

redraw (self) - Redraws the whole graph including, title, labels and the
caption.

reset (self, x1, y1, x2, y2) - Restarts with a new empty graph of the given
range. All pens are removed.

addPen (self, name, pen=AUTO GENERATE PEN,
updateCaption=True) - Adds a new pen with name “name” and at-
tributes “pen” to the graph.

removePen (self, name, redraw=True) - Removes a pen from the graph.
All coordinate pairs associated with this pen will be discarded.

addValue (self, name, x, y) - Add the point (x,y) to the graph drawn with
pen “name”.

peek (self, x, y) - Returns the graph coordinates of the screen coordinates
(x,y)

xaxisSteps (self, x1, x2) - Returns a list of virtual x-coordinates in the
range [x1,x2] with one point for each screen pixel. This is especially
useful when working with large range logarithmic scales.

8

yaxisSteps (self, y1, y2) - Returns a list of virtual x-coordinates in the
range [y1,y2] with one point for each screen pixel. This is especially
useful when working with large range logarithmic scales.

5.3 Class Simplex.Diagram

Class Simplex.Diagram is a class for drawing simplex diagrams of popula-
tion dynamics of populations of three species. For simplex diagrams ded-
icated to other purposes it is recommended to use the lower level class
Simplex.Plotter instead.

init (self, gfx, function, title=”Simplex Diagram”,
p1=”A”, p2=”B”, p3=”C”, styleFlags = VECTORS,
raster = RASTER DEFAULT, density = -1,
color1 = (0.,1.,0.), color2 = (1.,0.,0.),
color3 = (0.,0.,1.), colorFunc = scaleColor,
titlePen = Gfx.BLACK PEN, labelPen = Gfx.BLACK PEN,
simplexPen=Gfx.BLACK PEN, backgroundPen=Gfx.WHITE PEN,
section=Graph.REGION FULLSCREEN)

Initializes the class with the following parameters:

gfx Gfx.Driver: The Gfx drivers used for drawing the simplex diagram.

function f(p)->p*, where p and p’ are 3 tuples of floats that add up to
1.0: Population dynamics function to be displayed in the simplex
diagram.

title, p1, p2, p3 strings: Strings to mark the title and the three cor-
ners of the diagram with.

styleFlags integer, interpreted as a bitfield of flags: The style or rather
flavour of the simplex diagram. Presently three flavours are pos-
sible: VECTORS for drawing the diagram as a vector field with
many little arrows; TRAJECTORIES for drawing pseudo trajecto-
ries; PATCHES for drawing a patched diagram, where each point
in the diagram has a unique color in the beginning. From gener-
ation to generation, however, colors are adjusted such that every
point (”patch”) takes the color of the point it has moved to. This
exposes areas of attraction in the diagram.

raster list of points (3-tuples of floats that add up to 1.0): The point
raster of the simplex diagram. Suitable point rasters of varying
density can be produced with the functions Simplex.GenRaster

and Simplex.RandomGrid.

9

density integer > 2: The density of the points of the simplex diagram.
This is mainly useful in combination with style PATCHES, because
this style does not use a raster.

color1, color2, color3 (r,g,b)-tuples, where r,g and b are floats in
range of [0.0, 1.0]: The three color parameters have a different
meaning depending on the diagram style used. For patch diagrams
these are the edge colors of the three edges of the diagram. For
trajectory diagrams color1 is the starting color and color2 is the
color towards which later steps of the trajectory are shaded. For
vector fields the range between color1 and color2 is used to indicate
the strength of the vector field.

colorFunc f(ca, cb, strength) -> c, where ca and cb are colors and
strength is a float from [0, infinity]: This function produces a
color shade from ’ca’, ’cb’ and ’strength’, usually somewhere on
the line between ’ca’ and ’cb’. The parameter colorFunc is not
used for patches diagrams.

titlePen, labelPen, simplexPen, backgroundPen Gfx.Pen: Pens
for the respective parts of the simplex diagram.

section 4-tuple of floats from then range [0.0, 1.0]: the part of the
screen to be used for the diagram.

setStyle (self, styleFlags=None, titlePen=None,
labelPen=None, simplexPen=None, backgroundPen=None) - Changes
the style of the simplex diagram. It is not necessary to assign a value
to all arguments of the functions. Those arguments that no value is
assigned to will leave the respective class attributes untouched.

setFunction (self, function) - Changes the population dynamics function
that is visualized by the diagram. The change will only be visible after
the method show has been called.

setRaster (self, raster) - Changes the raster of sample points. The change
will only be visible after the method show has been called.

setDensity (self, density) - Generates a raster of uniformly distributed sam-
ple points (population distributions) with the given density. The change
will only be visible after the method show has been called.

changeColors (self, color1 = (0.,1.,0.), color2 = (1.,0.,0.),
color3 = (0.,0.,1.), colorFunc=scaleColor) - Changes the colors of di-
agram, including a color modifying function. Note: The semantics

10

of these paramters may differ depending on the visualizer used. The
change will only be visible after the method show has been called.

show (self, steps=-1) - Shows the diagram calculating ’steps’ generations for
dynamic diagrams (style TRAJECTORIES or PATCHES).

showFixedPoints (self, color) - Shows candidates(!) for fixed points (only
if style is PATCHES).

redraw (self) - Redraws the diagram.

resizedGfx (self) - Takes notice of a resized graphics context and redraws
the diagram.

6 Implementing a new device driver for Py-

Plotter

Adapting PyPlotter to a new GUI enviroment or to a new output device is
very easy. You only have to implement a class for the driver itself that is
derived from Gfx.Driver and, optionally, also another very simple standard-
ized window class to open an output window (or context) on your GUI or
device. The latter class must be derived from class Gfx.Window.

The driver class must implement the following methods from its par-
ent class Gfx.Drivers: __init__, resizedGfx, getSize, getResolution,
setColor, setColor, setLineWidth, setLinePattern, setFillPattern,
setFont, getTextSize, drawLine, fillPoly, writeStr. Overriding the
other methods or adding further methods is optional and may lead to in-
creased performance.

The window class must implement all methods of class Gfx.Window, that
is: __init__, refresh, quit, waitUntilClosed.

The already implemented drivers in modules awtGfx, wxGfx, tkGfx,
gtkGfx, qtGfx and psGfx may serve as examples for implementing new
drivers.

11

