
Chapter 6

Learning from failure

Ihr Instrumente freilich, spottet mein,
Mit Rad und Kämmen, Walz’ und Bügel.
Ich stand am Tor, ihr solltet Schlüssel sein;
Zwar euer Bart ist kraus, doch hebt ihr nicht die Riegel.

Goethe, Faust I

We have so far been looking at several computer simulations that
sought to help us to explain reciprocal altruism. We have furthermore
looked at a number of empirical example cases that confirmed some of
the general ideas suggested by the outcome of the computer simulations
but which – at the same time – raised very strong doubts concerning
the explanatory power of the computer simulations described. As any
theory is only as good as its confirmation and as we certainly want to
know, how good a theory of reciprocal altruism based on game theoret-
ical computer simulations can be, we need to enter into some general
considerations concerning the epistemology or, if preferred, the theory
of science of computer simulations. The question here is a question of
can, because as we have seen previously when looking at the concrete
examples, it is a fact that so far explanations of reciprocal altruism
based on computer simulations have not been successful.

6.1 Epistemological requirements for computer sim-

ulations

As has to be expected for a comparatively new scientific tool like com-
puter simulations, the field of the epistemology of computer simulations
is not very far developed. The most important epistemological question
concerning any computer simulation is: How do we know that what hap-
pens in the simulation represents what happens in reality? (Of course,
a simulation does not need to represent exactly what happens empiri-
cally, but it should represent what happens empirically well enough, so
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that we can draw conclusions from the simulation with respect to real-
ity. So, how do we know that this is the case?) In the more technically
orientated textbook literature on computer simulations (Gilbert and
Troitzsch, 2005) there is little to find that could answer this question.
This type of literature centers around how to program a simulation,
how to visualize the data and how to debug the program, that is, it tells
us how to proceed once we have decided to use the tool of computer
simulations, but it does tell us little about whence and where computer
simulations are an appropriate tool for investigating a certain scientific
question. And astonishingly little thought is usually dedicated to the
question what requirements a simulation must meet so that we can say
it is a good simulation, i.e. a simulation that fulfills its purpose.1

A philosophical literature on the epistemology of computer simula-
tions that could fill in the gap which is left open by the technical litera-
ture is only beginning to emerge. And often, unfortunately, it amounts
to little more than stocktaking of what goes on the field of computer
simulations, while only the surface is scratched of the epistemological
questions (Hegselmann et al., 1996) concernd. A more recent exam-
ple, where this is different, is Paul Humphreys’ “Extending Ourselves”
(Humphreys, 2004), which discusses at length the impact of computer
simulations on today’s scientific methodology. Regarding agent-based
simulations (which is the broader category under which the simulations
of the evolution of altruism presented earlier fall) Humphreys’ conclu-
sions are somewhat sceptical, as the following quotations may demon-
strate:

One of the more important questions that arise about
agent-based modeling is the degree of understanding which is
produced by the models. [...]

In fact ... because the goal of many agent-based procedures
is to find a set of conditions that is sufficient to reproduce
behavior, rather than to isolate conditions which are necessary
to achieve that result, a misplaced sense of understanding is
always a danger. (Humphreys, 2004, p. 132)

As we have seen, it has been claimed for agent-based mod-
els that one of their primary uses is exploratory, in the sense
that it is of interest to show that simple rules can reproduce
complex behavior. But this cannot be good advice without
imposing extra conditions. [...] Because it is often possible to

1Troitzsch and Gilbert reserve only three pages for topic of “validation” of computer simulations
(Gilbert and Troitzsch, 2005, p. 23-25).
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recapture observed structural patterns by using simple models
that have nothing to do with the underlying reality, any infer-
ence from a successful representation of the observed structure
to the underlying mechanisms is fraught with danger and can
potentially lock us into a model that is, below the level of data,
quite false. (Humphreys, 2004, p. 134)

Actually, as we have seen in the previous chapter (chapter 5), already
on“the level of data” the computer simulations of the evolution of altru-
ism hardly represented the “observed structure”, let alone on the level
of the underlying causal mechanisms. What is important here are the
“extra conditions”, which according to Humphreys must be imposed so
that we do not fall prey to the “misplaced sense of understanding” that
computer simulations all too easily convey. In the following I make a
proposal concerning the conditions which computer simulations ought
to fulfill in order to allow us a real understanding of the simulated phe-
nomena. For this purpose, I first distinguish different types of computer
simulations (section 6.1.1). Then I present and discuss a set of criteria
for the most important of these types, explanatory simulations (section
6.1.2).

6.1.1 Different aims of computer simulations in science

Computer simulations can be employed in science not only for generat-
ing explanations but for various different purposes. In order to distin-
guish different types of computer simulations according to their purpose,
we draw on our earlier distinction between a “conceptual level” and an
“application level” of the employment of computer simulations (see page
152) and develop it by two further distinctions into a more fine-grained
typology of four basic types. The two types that fall under the “con-
ceptual level” are proof-of-possibility simulations and exploratory simu-
lations. For the application level predictive simulations and explanatory
simulations will be distinguished.2

2The broader distinction between what I have termed a “conceptual level” and an “application level”
of simulations is more or less common in the simulation literature, although there is no established
terminology. Kliemt, for example, distinguishes between “thin” and “thick” simulations (Kliemt, 1996, p.
15), where thin simulations correspond more or less to what I have termed the“conceptual level”and thick
simulation to the “application level” in my terminology. Troitzsch and Gilbert speak of simulations that
merely serve the goal of understanding a certain kind of process (Gilbert and Troitzsch, 2005, p. 15ff.) in
the cases that I would describe as the “conceptual level”. Just as Humphreys, I believe that this kind of
“understanding” can be ever so misleading, wherefore I prefer to avoid this terminology. Also the precept
– on which I draw in the recipe section (see section 6.3) – to design “conceptual level” simulations as
simple as possible and “application level” simulations as acurate (i.e. as complex) as necessary is common
knowledge.
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The most basic type, proof-of-possibility simulations, are computer
simulations that are merely used to demonstrate the theoretical possi-
bility of certain assumptions or to disprove the theoretical necessity of
certain commonly held beliefs. An example would be computer simula-
tions of the evolution of altruism through group selection, which show
that group selection can promote the evolution of altruism in the long
run, even if altruism is always selected against within the group (see
chapter 4.3.1). Typically, proof-of-possibility simulations are simple,
small and not necessarily very “realistic” simulations. Such simulations
are quite commonly also referred to as“toy simulations”or“toy models”,
which is not always meant in a pejorative sense.

Instead of proving theoretical possibilities the scientist already had in
mind when constructing a simulation, computer simulations can also be
employed to explore the possible consequences or implications of certain
assumptions or to search for phenomena which can occur under certain
theoretical conditions but which are yet unknown. Simulations that
serve this purpose will be called exploratory simulations. Typically, this
kind of simulation takes the form of large series of simulations, or, as it is
sometimes called, “massive” simulations. (It should be understood that
the adjective “massive” only refers to the technical complexity and does
not say anything about the scientific quality of the simulation or the
credibility of its results.) An example for such a “massive” simulation is
the simulation series on reciprocal altruism presented in chapter 4.1.4.
Just as proof-of-possibility simulations, exploratory simulations are of
theoretical nature and do not need to resemble empirical reality. If there
exists any resemblance at all, then it is typically vague and consists in
the plausibility of the underlying assumptions.

The next class of computer simulations are predictive simulations.
The purpose of predictive simulations is to generate true predictions of
some empirical process. An example might be simulations in meteo-
rology that predict how the weather is going to be in the future. The
assumptions that enter into predictive simulations do not need to be in
any way realistic. As long as the predictions prove to be reliable, it is
permissible to use strongly simplified assumptions about the modeled
process or even assumptions which are known to be false. This shows
that just because a simulation produces successful predictions it does
not necessarily also provide an explanation for the predicted phenomena,
even though successful predictions may be one among several indicators
for a simulation to be explanatorily valid. As an explanation we would
accept a predictive simulation only if the assumptions built into the
simulation are consistent with our background knowledge (consisting of
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the accepted scientific theories) about the modeled process.3

The most desired case, however, would be that of an explanatory sim-
ulation, which is a type of computer simulation that actually allows us
to explain the empirical phenomena that are modeled in the simulation.
From an explanatory simulation we expect that it does capture the real
causes in virtue of which the modeled empirical phenomena happen. In
this sense explanatory simulations are epistemologically stronger than
predictive simulations. But in another sense they are not, because we
do not demand from an explanatory simulation that it generates pre-
dictions. Thus a simulation may be explanatory even if it offers only
ex-post explanations.4 Explanatory simulations therefore do not form a
subclass of predictive simulations.

Because the simulations of the evolution of altruism largely failed to
provide substantial (i.e. not just metaphorical) explanations for the em-
pirical instances of altruism, we will now discuss the criteria that proper
explanatory simulations should meet. This will help us to understand
the reasons for this failure.

6.1.2 Criteria for “explanatory” simulations

In what sense can a computer simulation be explanatory? And what are
the criteria a computer simulation must meet in order to be explanatory?

A computer simulation can be called explanatory if it adequately
models some empirical situation and if the results of the computer simu-
lation (the simulation results) coincide with the outcome of the modeled
empirical process (the empirical results). If this is the case, we can con-
clude that the empirical results have been caused by the very factors (or,
more precisely, by the empirical correspondents of those factors) that

3It has to be admitted that this requirement rests on specific epistemological commitments concerning
the generality of scope of scientific theories. I assume that if a scientific theory is well confirmed then it
tells us something about anything that falls within its scope, even in cases where we have to deal with a
configuration that is too complicated to analyze it in terms of the theory. If, in contrast, one follows Nancy
Cartwrights “Dappled World” (Cartwright, 1999) and assumes that the validity of scientific theories is
always locally restricted to its successful application cases then no conflict between predictive simulations
and background theories can arise, because a successful predictive simulation that rests on assumptions
that break with the background theories would then merely resemble another limit of the scope of these
theories. We would then lose any ground on which we could deny the title of an “explanation” to our
simulation.

4The motivation for allowing ex-post simulations is founded in the fact that many scientific explana-
tions, especially in the social sciences, only work ex-post. For example, there exists a number of good
explanations for the wave of democratization of the former communist states of Eastern Europe in the
late 80s and early to mid 90s of the 20th century. But who could have predicted it? It would be unfair
to demand from explanations that are based on computer simulations to offer more than can be accom-
plished by conventional science in the respective field. My criticism of Axelrod-style simulations in the
context of social sciences (see chapter 5.2.2) does not rest on the charge that they provide mere ex-post
interpretations but that they are far too simplistic.
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have brought about the simulation results in the computer simulation.
To take an example, let us say we have a game theoretic computer

simulation of the repeated Prisoner’s Dilemma where under certain spec-
ified conditions the strategy “Tit for Tat” emerges as the clear winner.
Now, assume further that we know of an empirical situation that closely
resembles the repeated Prisoner’s Dilemma with exactly the same con-
ditions as in our simulations. (Probably, the easiest way to bring this
about would be by conducting a game theoretic experiment, where the
conditions can be closely monitored.) And let us finally assume that
also in the empirical situation the “Tit for Tat” strategy emerges as the
most successful strategy. Then we are entitled to conclude that “Tit for
Tat” was successful in the empirical case, because the situation was a
repeated Prisoner’s Dilemma with such and such boundary conditions
and because – as the computer simulation shows – “Tit for Tat” is a
winning strategy in repeated Prisoner’s Dilemma situations under the
respective conditions.

Now that we have seen how explanations by computer simulations
work in principle, let us ask what are the criteria a computer simulation
must fulfill in order to deserve the title of an explanatory simulation.
The criteria should be such as to allow us to check whether the expla-
nation is valid, that is, whether the coincidence of the results is due to
the congruence of the operating factors (in the empirical situation and
in the computer simulation) or whether it is merely accidental.

As criteria that a computer simulation must meet in order to be an
explanatory model of an empirical process, I propose the following:

1. Adequacy Requirement: All known5 causally relevant factors of the
modeled empirical process must be represented in the computer
simulation.

(This requirement is roughly equivalent to demanding that the the-
oretical assumptions built into the simulations should not break
with or ignore our background knowledge about the modeled pro-
cess, because it is only in virtue of this background knowledge that
we know about the causally relevant factors of the modeled empir-
ical process.)

In the case of predictive simulations this first requirement would
have to be replaced by the requirement of predictive success. A
predictive simulation does not need to model the causes of a process

5The restriction to all known causes was suggested by Claus Beisbart to avoid an epistemic impassé
when simulations are employed as a tool to find out just what the causally relevant factors of a given
empirical process are.
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realistically. But if it does not then at least its predictions must
come true.

2. Robustness or Stability Requirement: The input parameters of the
simulation must be measurable with such accuracy that the simu-
lation results are stable within the range of inaccuracy of measure-
ment.6

3. Descriptive Appropriateness or Non-Triviality Requirement: The
results of the computer simulation should reflect at least some im-
portant features (that is features the explanation of which is de-
sired) of the results of the modeled empirical process. In particular,
the results should not already be deducible without any model or
simulation from the empirical description of the process.

If all of these criteria are met, we can say that there exists a close
fit between model and modeled reality. What I wish to claim is that
only if there is a close fit between model and reality are we entitled
to say that the model explains anything. Even though these criteria
are very straightforward, a little discussion will be helpful for better
understanding.

Regarding the first criterion, it should be obvious that if not all
causally relevant factors are included, then any congruence of simulation
results and empirical results can at best be accidental. Two objections
might be raised at this point: 1) If there really is a congruence of sim-
ulation results and empirical results, should that not allow us to draw
the conclusion that the very factors implemented in the computer sim-
ulation are indeed all factors that are causally relevant? 2) If we use
computer simulations as a research tool to find out what the causes of
a certain empirical phenomenon are, how are we to know beforehand
what the causally relevant factors are, and how are we ever to find it
out, if drawing reverse conclusions from the compliance of the results to
the relevant causes is not allowed?

To these objections the following can be answered: If the simulation
is used to generate empirical predictions and if the predictions come true
then this can indeed be taken as a strong hint to its capturing all relevant
causes of the empirical process in question. With certain reservations
we are then entitled to draw reverse conclusions from the compliance of

6The importance of stability is often emphasized in the simulation literature. Especially so, because
there are certain types of systems (chaotic systems) for which stability cannot be achieved in principle.
Often, however, stability is merely treated as a kind of internal property of simulations (Gilbert and
Troitzsch, 2005, p. 23) and not, as it should be done, as a relational property between simulation and
measurement capabilities which bears consequences for the epistemological strength that can be ascribed
to a simulation.
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the results to the exclusive causal relevance of the incorporated factors
or mechanisms. The reservations concern the problem that even if a
simulation has predictive success it can still have been based on unre-
alistic assumptions. Sometimes the predictive success of a simulation
can even be increased by sacrificing realism. Therefore, in order to find
out whether the factors incorporated in the computer simulation are
indeed the causally relevant factors, we should not rely on predictive
success alone, but we should consult other sources as well, such as our
scientific background knowledge about the process in question. Also, if
we already know (for whatever reason) that a certain factor is causally
relevant for the outcome of the empirical process under investigation
and if this factor is not included in the simulation of this process then
even if the simulation predicts correctly, we are bound to conclude that
it does so only accidentally.

Furthermore, drawing conclusions from the predictive success of a
simulation to its explanatory validity is impermissible in the case of ex-
post predictions. For, if we only try hard enough, we are almost sure to
find some computer simulation and some set of input parameters that
matches a previously fixed set of output data. The task of finding such
a simulation amounts to nothing more than finding any arbitrary algo-
rithm that produces a given pattern. But then we will only accidentally
have hit on the true causes that were responsible for the results of the
empirical process.

Therefore, only if we make sure that at least all factors that are
known to be causally relevant are included in the simulation, we can
take it as an explanation. And usually we cannot assure this by relying
on the conformance of the simulation results and the empirical results
alone without any further considerations. Summarizing, we can say: If
the first criterion is not fulfilled, then the computer simulation does not
explain.

The second criterion is even more straightforward. If the model is
unstable then we will not be able to check whether the simulation model
is adequate. For, if it is not stable within the inevitable inaccuracies of
measurement, this means that the model delivers different results within
the range of inaccuracy of the measured input parameters. But then we
can neither be sure that the model is right, when the model results match
the empirical results, nor that it is wrong, when they don’t (unless the
empirical results are even outside the range of possible simulation results
for the range of inaccuracy of the input parameters). Let’s for example
imagine we had a game theoretic model that tells us whether some actors
will cooperate or not cooperate. Now assume, we had some empirical
process at hand where we know that the actors cooperate and we would
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like to know whether they do so for the very reasons the model suggests
or, in other words, we would like to know whether our model can explain
why they cooperate. If the model is unstable then – due to measurement
inaccuracy – we do not know whether the empirical process falls within
the range of input parameters for which the model predicts cooperation
or not. Then there is no way to tell whether the actors in the empirical
process cooperated because of the reasons the model suggests or, quite
the contrary, in spite of what the model predicts.

A special case of this problem of model stability and measurement
inaccuracies occurs when we can only determine the ordinal relations of
greater and smaller of some empirical quantity but not its cardinal value
(perhaps, because it does not have a cardinal value by its very nature,
which is the case for the quantity of utility in many contexts). In this
case the empirical validation of any simulation that crucially depends on
the cardinal value of the respective input parameters will be impossible.
Briefly put, the morale of the second criterion is: If condition two is not
met, we cannot know whether the computer simulation explains.

In connection with the first criteria the requirement of model stability
(in relation to measurement inaccuracy) gives rise to a kind of dilemma.
In many cases an obvious way to make a model more adequate is by
including further parameters. Unfortunately, the more parameters are
included in the model the harder it becomes to handle. Often, though
not necessarily, a model loses stability by including additional param-
eters. Therefore, in order to assure that the model is adequate (first
criterion), we may have to lower the degree of abstraction by includ-
ing more and more parameters. But then the danger increases that
our model will not be sufficiently stable any more to fulfill the second
criterion.

There exists no general strategy to avoid this dilemma. In many cases
it may not be possible at all. But this should not come as a surprise.
It merely reflects the fact that the powers of computer simulations are
– as one should certainly expect – limited at some point. With the
tool of computer simulations many scientific problems that would be
hard to handle with pure mathematics alone come within the reach of
a formal treatment. Still, many scientific problems remain outside the
realm of what can be described with formal methods, either because of
their complexity or because of the nature of the problem. This remains
especially true for most areas of the social sciences.

The third criterion requires that the output of the computer simu-
lation should reflect the empirical results with all the details that are
regarded as scientifically important and not just – as it sometimes hap-
pens – merely a much sparser substructure of them. For example, we



194

may want to use game theoretic models like the Prisoner’s Dilemma to
study the strategic interaction of states in politics. The game theoretic
model will tell us whether the states will cooperate or not, but most
probably it will say nothing about the concrete form of cooperation
(diplomatic contacts, trade agreements, international contracts etc.) or
non cooperation (embargoes, military action, war etc.). Therefore, even
if the model or simulation really was predictively accurate, it does at
best provide us with a partial explanation, because it does not explain
all aspects of the empirical outcome that interest us. In the worst case
its explanatory (or, as the case may be, its predictive) power is almost as
poor as that of a horoscope. The prediction of a horoscope that tomor-
row“something of importance”will happen easily becomes true, because
of its vagueness. Similarly, if a game theoretic simulation predicts that
the parties of a political conflict will stop cooperating at some stage, but
does not tell us whether this implies, say, the outbreak of war or just
the breakup of diplomatic relations then it only offers us comparatively
unimportant information. We could also say that if the simulation re-
sults fail to capture all (or at least the most) important features of the
empirical outcome then the computer simulation “misses the point”.

Summing it up: Only if a computer simulation closely fits the simu-
lated reality – that is if it adequately models the causal factors involved,
if it is stable and if it is descriptively rich enough to “hit the point” –
can it claim to be explanatory.

6.2 Reasons for failure

The establishment of criteria for explanatory simulations allows pin-
pointing the reasons why computer simulations of the evolution of al-
truism failed to explain the evolution of altruism:

1) For hardly any of the empirical instances of altruism a computer
simulation existed which could be called empirically adequate. It is very
difficult to find an empirical study of the evolution of altruism wherein
recourse to a simulation model is taken. In the few instances where this
was the case, it ultimately turned out to be a failure (see page 154 and
chapter 5.1.3). In the sociological examples the difficulties to capture
all causally relevant factors in a computer simulation were even more
obvious (see chapter 5.2.2). In neither biology nor sociology, however,
do the difficulties seem completely insurmountable in principle. If the
right empirical example cases were picked and if the simulation models
were built to fit the respective empirical instances of altruism, they
might one day indeed contribute to the explanation of the evolution of
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altruism.

Presumably, one of the main reasons for the explanatory failure of
computer simulations consists in a misconception about there being
some such thing as an “in principle explanation” by a computer sim-
ulation. Robert Axelrod, one of the pioneers of the method, believed
that by analyzing how and why cooperation evolves in a computer sim-
ulation that is based on sufficiently plausible model assumptions, he
could devise an in principle explanation for the evolution of altruism.
This explanation, he believed, could then be applied to any empirical
instance of cooperation that somehow exposed a pattern of interaction
that resembled his winning strategy Tit for Tat. It should be obvi-
ous by now that the implicit epistemological conception of explanatory
computer simulations behind this belief is severely mistaken. Of course,
most other authors of simulation models are far more modest about the
explanatory claims they derive from their models. Rudolf Schüßler, for
example, admits at one point quite frankly that his simulation models,
which are similar to Axelrod’s, hardly provide any decisive argument
in the debate about sociological normativism to which they are related
(Schüßler, 1990, p. 91).7 But then he leaves the reader with the ques-
tion what his simulations are good for, if they cannot prove any point
at all.

2) Just as the requirement of empirical adequacy, the second require-
ment, stability, was hardly anywhere fulfilled. It should be understood
that stability is a relational property between the model and its empir-
ical application case. Except for the special case of chaotic processes,
stability issues can therefore be resolved either by redesigning the model
so that it reacts less sensitively to changes in parameter values or by
devising more precise measurement procedures. Regarding the latter,
however, it seems that in biology the problem of measuring the payoff
parameters for game theoretical models poses an extremely obstinate
problem (see page 154). In the social sciences this problem can to some
degree be remedied if the payoff is understood in monetary terms. This
is especially true for experimental economics, where the experimenter
simply can pay the participants a certain amount of money depending

7The passage from Schüßler’s book reads: “Game theoretical arguments can usually explain little
empirically, but they can help to correct unfounded judgements, point out possibilities, and reduce fears
of the ever looming decline of values und the stability of modern societies. How much or little that is, is
a question of perspective and aptitude to make do with the art of the possible (Kunst des Möglichen)”.
It seems that for Schüßler game theoretical arguments do more to serve a therapeutical purpose or one of
political propaganda for that matter, than a scientific one. But then it would be more logical to conclude
that game theory may just not be the right tool to tackle the sort of questions that Schüßler deals with
and that one should rather give other methods a try instead of confining oneself to the“art of the possible”
within the narrow limits of game theoretical arguments.
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on the outcome of the games played. However, as far as evolutionary
models are concerned, there would still remain the problem of linking
the monetary payoff to the replicator dynamics.

In some cases a model seems to be appropriate even if the parameters
cannot be measured and just on behalf of the fact that the empirical
process exposes a strong similarity to the modeled process on the phe-
nomenological level. For example, grooming behavior in impala (see
page 146) seems to resemble very closely the kind of interaction that
takes place in the repeated Prisoner’s Dilemma. Yet, because the model
is sensitive to variations of the numerical values of the payoff parame-
ters and because we cannot measure the parameter values, we cannot
strictly check the validity of the model. Therefore, the model can at
best be granted the epistemological status of a good metaphor in such
a case.

The problem of model instability due to the use of immeasurable in-
put parameters in the simulation models suggests that one should first
consider what kinds of parameters can be measured in a given empirical
situation and then try to construct the simulations around the mea-
surable quantities. This principle could be called the build to order
principle, because it means that the models should be build according
to the restrictions and demands of empirical research just as a customer
configurable product should be built according to the order of the cus-
tomer. Of course, there exists a possibility of conflict between this prin-
ciple and the empirical adequacy requirement in the case where certain
factors which are known to be causally relevant depend on quantities
which are not measurable. But then we should also consider that the
underlying theory which makes use of immeasurable (hidden) factors
may not be a very suitable one. (Example: Game theory which relies
on payoff parameters when applied in situations where the concept of
utility appears questionable.)

3) While the first requirement, empirical adequacy, is related to the
input parameters of simulation models, the third criterion, descriptive
appropriateness or non triviality, is related to the output parameters.
In the case of repeated game models of the evolution of altruism the
output is some kind of altruistic or non altruistic strategy. This is just
what the scientist asks for when investigating altruistic behavior so that
it can be granted that at least the third criteria is fulfilled for repeated
game simulations of the evolution of altruism.

There are, of course, borderline cases, where even this might be dis-
puted. In the case of the “live and let live”-system in World War One,
the output of the model certainly does not capture all the nuances of
the strategies that the soldiers employed to keep alive the “live and let
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live”-system. Most notably it does not capture the means of signal-
ing and clandestine communication that the soldiers invented as part
of their strategy. Still, as the information whether the front soldier’s
actions will converge to a cooperative or non cooperative equilibrium is
far from trivial, it is not the non-triviality requirement because of which
the simulation largely fails to explain the “live and let live”-system, but
the fact that it misses many of the causes that were decisive for the
evolution of this system (see chapter 5.2.2).

Summing it up, the reason why the computer simulations of the evo-
lution of altruism failed to explain the evolution of altruism in reality,
can now precisely be stated as the result of the violation of – in almost
all cases – the stability criteria and additionally – in many cases – the
empirical adequacy criteria.

6.3 How to do it better

If the common brand of computer simulations of the evolution of co-
operation or altruism has been largely a failure, the question naturally
arises how such computer simulations can possibly be done better. Turn-
ing from diagnosis to therapy, I am therefore going to to make a few
proposals on what precautions must be taken when devising computer
simulations so that they do not remain mere toys but become useful
and valuable tools of science. For the sake of simplicity, these propos-
als will be cast in the form of four simple recipes, each of which covers
one of the above distinguished types of simulations. Doing so, my aim
is not so much to give technical advice on how to design and program
computer simulations, but to give recommendations that may help to
get the epistemological issues right, so that in the end the computer
simulations really yield some substantial scientific results and do not
remain mere toys.

6.3.1 Recipe 1: Proof-of-possibility simulations

The object of a proof-of-possibility simulation is to demonstrate theo-
retical possibilities. In order to assure that the proof of a theoretical
possibility via a computer simulation is scientifically valuable the fol-
lowing steps should be taken:

1. Does the proof of the theoretical possibility in question really con-
tribute to answering the scientific question by which it was moti-
vated? If not, a computer simulation may not be the tool of choice.
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Often, what is needed to be known in order to decide a certain
question are not theoretical possibilities but real possibilities. But
then the proof of a mere theoretical possibility bears no significance
at all for the original question.

Examples of the violation of this principle:

(a) Rudolf Schüßler demonstrated with the help of a computer sim-
ulation that cooperation can evolve on “anonymous markets”
without norms or enforced repetition of interaction as in the
common reiterated games models (see appendix 8.5). This was
meant as a contribution to the discussion about sociological
normativism, i.e. the position that social order (cooperation)
crucially depends on the norms of the society and the social
bonds between its members. Since sociological normativists
are not at all forced to deny that there exists a theoretical pos-
sibility of cooperation without norms in some arbitrary game
theoretical setting, Schüßler’s demonstration remains without
much relevance for the original question.

(b) Michael Taylor somewhat famously demonstrated the theoreti-
cal possibility of an anarchic political order by game theoretical
reasoning. Since among the many historical precedents of anar-
chy there exists hardly a single one where the state of anarchy
was a state of order, his possibility-proof remains extremely
question-begging (Taylor, 1997).8

(c) Somewhat similar to Taylor, Brian Skyrms employs computer
simulations of the stag-hunt-game allegedly to investigate the
evolution of political order (Skyrms, 2004). Again, as these
abstract game theoretical models bear hardly any resemblance
to any historical instances of the genesis of political order, they
remain very question-begging. In contrast, the just-so-stories of
17th century social contract theorists like Thomas Hobbes draw
their plausibility from the historical and political experiences
they are related to, which makes them far more convincing than
any of the game theoretical models.

2. Can the same results non-trivially be derived from the background
theories, anyway? If yes, there is not really a need to build a com-
puter simulation.

8The only examples that come close to Taylor’s vision concern highly decentralized federal state
systems which, however, are not anarchic in the sense of a more or less equal distribution of power on the
level of individuals (or at least small families) or the non existence of any centers of power whatsoever.
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Of course a computer simulation can in this case still serve as an
illustration. Also, there may be cases, where it is not obvious how
a result could be derived from the theory, so that a computer sim-
ulation may be a faster way to obtain the result.

3. Design the simulation as simple as possible.

As for proof-of-possibility simulations only extremely weak empir-
ical adequacy requirements (“plausibility”) must be fulfilled, the
simulation does not need to be overly complex. It should only
demonstrate the possibility in question in the simplemost way and
not more.

4. Massive simulations should be avoided when only a possibility proof
is needed.

Massive simulations may be useful to search for unknown theo-
retical possibilities (see recipe 2). But to merely demonstrate a
theoretical possibility, running a whole series of simulation is su-
perfluous.

5. Don’t tell stories and avoid jumping to conclusions by drawing em-
pirical analogies.

If a computer simulation proves a certain theoretical possibility,
say, for example, the possibility that Tit for Tat can be evolution-
ary successful in the repeated two person Prisoner’s Dilemma, then
it proves just that, nothing more and nothing less. It should not be
pretended that the computer simulation demonstrates how Pales-
tinians and Israelis can live in peace together or the like. To relate
proven theoretical possibilities to empirical questions in a meaning-
ful way is a matter of careful and cautious interpretation.

6.3.2 Recipe 2: Exploratory simulations

The object of exploratory simulations is to detect new theoretical phe-
nomena or possibilities within a certain artificial setting. The episte-
mological and pragmatic questions involved are very similar to those
involved in proof-of-possibility simulations.

1. Is it to be expected that any theoretical phenomena will be discovered
that are of scientific relevance? If not, simulations might be beside
the point.

This is very much the same point as in the first recipe. The ra-
tionale behind this precept is that one should have some strategic
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goal in mind regarding what shall be achieved with the simulation.
Merely toying with computer simulations is just not sufficient. It
might be objected that playful behavior should have its place in sci-
ence and that some of the most brilliant discoveries of science have
been found by accident. But then, one can hardly base a research
strategy on the hope for accidental discoveries.

2. Use “massive” simulations and “Monte-Carlo” simulations for ex-
ploring.

Unlike the case of merely demonstrating a theoretical possibility,
increased complexity of the simulation may pay in the case of ex-
ploratory simulations. If one has a certain idea in mind what kind of
phenomena could appear, one might also employ systematic search
algorithms instead of random searching (“Monte-Carlo simulation”)
or even evolutionary algorithms to look for the presumed phenom-
ena.

3. If new phenomena have been discovered, try to isolate them and
demonstrate them in a simpler setting.

In order to understand the phenomenon, it needs to be isolated.
For example, the simulation series on reciprocal altruism presented
earlier (chapter 4.1.4) uncovered two “surprising” phenomena: A
strong success of the strategy Hawk, and a more than marginal suc-
cess of the strategy Dove. Both phenomena could then be explained
by isolating them (see pages 98 and 103). In order to demonstate
that Dove can be more successful than Tit For Tat even in the
presence of exploiting strategies, the phenomenon was isolated in a
single simpler proof-of-possibility simulation (see figure 4.16).

4. Don’t tell stories and avoid jumping to conclusions by drawing em-
pirical analogies.

“Massive simulation” or “Monte-Carlo simulation” sound awfully
impressive, but as long as they are not grounded empirically, they
remain completely theoretical and, as has been shown at length
in chapter 5, there is a certain danger that the thereby obtained
results may ultimately turn out to be highly irrelevant for empirical
science.

6.3.3 Recipe 3: Predictive simulations

Predictive simulations are simulations that are meant to predict empir-
ical(!) phenomena of a certain class. Predictive simulations do not need
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to be realistic, as long as the predictions are successful. Because they
are intended for empirical application, building predictive simulations
is a much more demanding process.

1. Clearly determine the empirical process(es) which the simulation is
supposed to simulate and give an empirical specification of the input
and output parameters.

This implies that the input parameters must be measurable (or
at least determinable) quantities and not hidden factors. For ex-
ample, in many empirical situations, the utility payoff assumed in
game theoretical models is a hidden quantity. Often it is not even
clear whether this quantity has a direct empirical counterpart at
all. To avoid stability issues, the simulation should therefore be
constructed around empirically interpretable and measurable input
parameters that is, it should be “built to order” (see above).

2. Assure that the stability and descriptive appropriateness require-
ment are met.

The simulation model must deliver stable results within the mea-
surement inaccuracies of the input parameters (stability) and its
output must be informative within the measurement inaccuracies
of the output parameters.

3. Calibration of the simulation:

In order to calibrate the simulation properly, proceed by the fol-
lowing steps:

(a) Pick an empirical sample case, measure the input parameters,
let the simulation generate a prediction and compare it with
the empirical data.

(b) If the simulation predicted the data correctly, it is calibrated
and the calibration process is finished.

(c) If not, revamp the simulation so that it fits (i.e. correctly pre-
dicts) the sample case. Pick a new sample case and proceed
with step one. Repeat, until the simulation fits a sample case
right away. When revamping, make sure that the simulation
continues to fit all previous sample cases.

Calibration can also take place ex post, as long as there are enough
sample cases and the sample cases are not “used up” before cali-
brating is finished.
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4. Only when a simulation has been calibrated properly, which is tes-
tified by its having made at least one successful prediction, can we
say that it simulates the process.

It is a mistake to assume that merely by revamping and tweaking
a computer simulation until it fits the data of some empirical pro-
cess, we get a simulation of that process. At best what we obtain
is an arbitrary (and probably unnecessary complicated) algorithm
to produce a certain pattern of output data. But if the simula-
tion predicts correctly then it would be a “miracle”, had it not hit
upon some underlying causal structure of the simulated empirical
process.

The requirement of proper calibration may turn out to be frustrat-
ing, because in many cases we may – following the above procedure
– fail to reach a calibrated simulation. But then this just means
that devising a proper computer simulation is a much more de-
manding process than it is often thought to be. Merely fitting a
simulation ex-post on some set of data is simply not enough. Only
a calibrated simulation simulates.

6.3.4 Recipe 4: Explanatory simulations

Differently from purely predictive simulations, we demand from an ex-
planatory simulation that it models the real causes of the simulated
process. While it is desirable that an explanatory simulation should
also be predictive, this is not a requirement. But if it is not predictive,
its empirical adequacy must be secured by other means. To devise a
truly explanatory simulation, I recommend the following steps.

1. Check whether really all causally relevant factors of the simulated
process can be rendered in a formal simulation model. If the sim-
ulation models only a substructure of the process then it must be
assured that this substructure can be causally isolated.

Often it is only a substructure of a more complicated process that
can be rendered in formal terms. For example, the strategic compo-
nent of the diplomatic, economic, or – as the case may be – military
interaction of nation states can in many cases be rendered in game
theoretical terms. However, as the outcome of the respective inter-
action processes is also determined by other factors (psychological,
ideological, cultural factors etc.) that cannot be rendered in for-
mal terms, constructing too elaborate game theoretical models is
probably not worth the effort.
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2. Clearly determine the empirical process(es) which the simulation is
supposed to simulate and give an empirical specification of the input
and output parameters.

Same as above.

3. Assure that the stability and non triviality requirement are met.

Again, same as above.

4. Finally, check whether the simulation results really match the em-
pirical data.

If changes in the simulation are necessary to make it match the
data, the question should be clarified whether these changes are
consistent with the background knowledge (or, respectively, the
known causal factors) about the simulated process.

6.4 Closing Words

The general morale of this chapter can be summarized as follows: Com-
puter simulations are not an end in themselves but a scientific tool the
use of which ought to depend on the scientific purpose. This means
that computer simulations should be designed in view of the purpose
that they are to serve and in such a way that in the end we can check
whether the simulations were an appropriate means to their designated
end. There may be cases where this is impossible to achieve. But then it
is also doubtful whether employing computer simulations in these cases
is worthwhile. The most important purpose that computer simulations
can serve is that of finding scientific explanations for phenomena that
appear in the real world. In order to assess whether computer sim-
ulations will serve the purpose of providing an explanation for some
empirical phenomenon, I have proposed the three criteria of empirical
adequacy, robustness and non-triviality. Having analyzed with the help
of these criteria the reasons why computer simulations of the evolu-
tion of altruism largely fail to provide an explanation for why altruism
evolves in nature and society, it is difficult to avoid the conclusion that
the tool of computer simulations is only of limited use in this context.

However, the value of a scientific tool should not only be judged by
its present usefulness, but also by its future potential. If the epistemo-
logical justification requirements are raised too high, there is a certain
danger of discouraging a new approach with good prospects or rejecting
a promising new scientific tool just because it does not live up to all
expectations in its premature stages. Regarding this aspect, the tool
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of computer simulations may still become useful for the explanation of
phenomena as empirical research progresses and as new experiments and
measurement techniques are developed. But in order to ever become a
useful tool of science it is important to have an idea of the direction into
which the development of computer simulations must go. The wrong
direction would certainly be to continue, as it has been done before,
by basing computer simulations on plausible assumptions or on exist-
ing computer simulations through adding or changing a few parameters.
Such aimless simulating just leads astray from the“real”questions of the
evolution of altruism and gives a false impression of knowledge about
empirical processes that in reality we do not possess. In the fashion that
computer simulations have been used to study the evolution of altruism
until now, they have mostly been more of a toy than a useful scientific
tool.
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