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Introduction

In today’s  science,  computers have become an indispensable 
tool. They are used for the evaluation of scientific data, for storing 
data, for the preparation of results, and for communication among 
scientists. However, computers are not only tools that help scien-
tists to process and evaluate scientific data, but also they produce 
scientific data when they are used for running computer simula-
tions. This raises the question of whether the data that computer 
simulations produce is the same as other kinds of scientific data, 
in particular experimental data. What speaks for this assumption 
is that the data produced by simulations are usually previously 
unknown to the scientists,  often cannot be derived mathemati-
cally, and may yield the same or at least similar kinds of informa-
tion about a simulated empirical system as an experiment yields. 
What speaks against this assumption is the fact that simulation 
data stems from a calculation performed with a computer and 
that it is not the result of an empirical measurement, or not di-
rectly the result. This is also the stance that I am going to take in 
this chapter.
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I will set out the reasons for taking this stance in detail in the 
following section, when I review the debate on the relation of sim-
ulations and experiments. In particular,  I  will  argue that com-
puter simulations are not material in any sense that would liken 
them to experiments (as maintained by Parker, 2009) and that ex-
periments are not intertwined with models to such a degree that 
the function of models in experiments becomes indistinguishable 
from the  function  of  models  in  simulations  (as  maintained by 
Morrison, 2009).

But there is also a further possible line of reasoning against a 
strict separation of simulations and experiments that  is  not so 
easily dismissed. According to this line of reasoning, simulations 
and experiments cannot strictly be separated because, at least in 
some instances, the role that empirical data take can appear indis-
tinguishable in simulations and experiments. The question arises 
for those simulations that do in one way or another make use of 
empirical input data, and for those experiments that in one way 
or another involve the computational post-processing of the mea-
sured data. In both cases, the computer produces some kind of 
output  data  by processing  empirical  input data.  The question, 
then, is precisely: what kind of output data?  

We can define those scientific procedures that involve both em-
pirical input data and computational processing of these data col-
lectively as  hybrid methods. The problem of hybrid methods can 
then be formulated as follows: 

What, if anything, distinguishes a computer simulation that  
makes use of empirical input data from a measurement that  
involves the computational refinement of empirical data?
 
It is not entirely clear whether this question is the right way of 

formulating the problem. I will  briefly discuss different alterna-
tives in the third section of this chapter as well. The answer to 
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the problem of hybrid methods that is advocated here treats it as 
a partly conventional matter whether the outcome of hybrids is 
considered as empirical data or as theoretical data (which includes 
simulation data).  The convention proposed here is that  hybrids 
should be considered as empirical methods, if 

1. The output data represents quantities that are either causally 
responsible for the values of the input data or that are mathe-
matically connected to them.

It may appear paradoxical that the output should be causally 
responsible for the input, but a simple example suffices to ex-
plain what is meant: assume that you measure force with a 
simple spring. Then what you actually measure is the exten-
sion of the spring (input data) and the scale on the spring al-
lows you to  “compute” the  force  in  Newton (output  data). 
Now, it is of course the force (i.e. the output) that is causally 
responsible for the extension (i.e. the input). At the same time, 
it is true that the output value depends on the input value, 
but this dependence is computational and not causal. I hold 
that this  pattern  is  typical  for  any measurement where  the 
quantity that is measured is only indirectly accessible.

2. And the output data characterizes factors that operate in close 
spatiotemporal proximity to the input data or, more precisely, 
to the source data.
 
In order to defend this convention, I am going to argue that it 

is in harmony with the self-ascription by the scientists using these 
methods,  with  the  traditional  understanding  of  measurements, 
and with our intuition.
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The Current State of the Debate

The philosophical debate on the epistemic status of computer 
simulations can be traced back at least until the early 1990s. One 
of the popular slogans that already appeared as early as that in 
the debate was that of simulations as a “third way of doing sci-
ence”  (Axelrod,  2006;  Küppers  and  Lenhard,  2005;  Rohrlich, 
1990), indicating that computer simulations neither fully resemble 
material experiments nor conventional forms of theory or model 
building, but that they are something in between. While this is a 
fair characterization of the activity of conducting computer simu-
lations, which in many ways resembles experimentation but also 
requires specific practical skills and virtues that differ from those 
of experimenters, it is doubtful whether computer simulations can 
be characterized as a “third way” in an epistemological sense. For 
scientists themselves it has been clear most of the time that com-
puter simulations are not an empirical method of science, even 
though they resemble experiments, and that therefore computer 
simulations, just like theories and models, are in need of empirical 
validation themselves, rather than being able to confer empirical 
validation on theories (Gilbert and Troitzsch, 2005; Heath, Hill 
and Ciarello, 2009). This  view is also reflected in much of the 
philosophical  literature  on  computer  simulations  of  the  2000s 
(Guala, 2002; Humphreys, 2004; Morgan, 2003).

However, in the latest installments of the philosophy of simula-
tions, this view has come under attack. In the context of a someti-
mes confused debate about the alleged materiality of simulations, 
philosophers have denied that there is any fundamental or episte-
mologically  relevant  difference  between  simulations  and  experi-
ments. Or, if there is,  then at least “any epistemically relevant 
differences between experiment and simulation [are] very difficult 
to articulate” (Morrison, 2009, 48). I am convinced that this is a 
mistake. First, therefore, I am going to set out some of the core 
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arguments  against  the  epistemic  difference  between simulations 
and experiments and I will try to show why all of them are wrong, 
some of them quite obviously so. Then, I am going to put forward 
positive arguments for the differences between simulations and ex-
periments. Finally, I explain why, in spite of the clear conceptual 
distinction, hybrids still provide a challenge for the epistemology 
of simulations.

Arguments Against the Difference
between Simulations and Experiments

The philosophers who are the most critical of the attempts to 
draw a clear distinguishing line between simulations and experi-
ments are Wendy Parker (2009), Eric Winsberg (2009, 2010) and 
Margaret Morrison (2009). Wendy Parker argues that simulations 
in a sense are also “material” and that at any rate what matters 
is not materiality but “relevant similarity” (Parker,  2009, 484), 
which can be quite independent from the material status of the 
experiment or simulation. Winsberg does not go quite as far as 
Parker, but he, too, argues that simulations and experiments can-
not be sharply distinguished by their materiality or by any similar 
criteria. The only distinction he concedes is that the way in which 
scientists justify their belief that the object under study (in a sim-
ulation or an experiment) can stand in for the target differs be-
tween simulations and experiments. As we shall see, he cannot ad-
vocate this view without contradiction, because the justifications 
cannot differ without referring to some other difference on which 
the different justifications are based. But then, the different kind 
of justification is not the only difference any more.

Morrison, in contrast to Parker, does not diminish the differ-
ence between simulations and experiments by arguing that simula-
tions are also somehow material and, thus, somehow like experi-
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ments. But, quite the contrary, she argues that experiments in ad-
vanced science are somehow like simulations, because “the way 
models function as the primary source of knowledge in each of the 
(…) contexts [simulation and experimental] is not significantly dif-
ferent” (Morrison, 2009, 43). As we shall see, she overlooks the 
simple  fact  that  in  simulations  a  model  also  functions  as  the 
source of data while in experiments, the data is at least copro-
duced by nature.

I  will  now  explain  the  flaws  of  the  central  arguments  by 
Parker, Winsberg, and Morrison in more detail.1 Parker offers sev-
eral arguments, which are partly independent from each other. As 
mentioned, one argument is that simulations like experiments are 
also “in a sense” material. The sense in which simulations are ma-
terial is this:

 
The experimental  system in a computer experiment is the pro-
grammed digital computer – a physical system made of wire, plas-
tic, etc. As described in the last section, a computer simulation 
study involves putting a computing system into an initial state, 
triggering its subsequent evolution (the simulation), and collecting 
information regarding various features of that evolution, as indi-
cated by print-outs, screen displays, etc. It is those data regarding 
the behavior of the computing system that constitute the immedi-
ate results of the study. In a computer simulation study, then, sci-
entists  learn first  and foremost  about the behavior  of  the pro-
grammed computer. (Parker, 2009, 488ff)

But, obviously, the kind of materiality that computer simula-
tions enjoy because they are run on a material system (i.e., the 
computer hardware) does not at all liken them to real material ex-
periments. It is misleading to say that the data that is presented 
on the printouts and screen displays is “data regarding the behav-

1 Still I have to confine myself to the most important points here. For an even 
more detailed criticism see the working paper by Kästner and Arnold (2012).
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ior of the computing system.” For the data of a simulation usually 
does not convey any information about the computer on which it 
was produced, but only information about the simulated system. 
It would be equally awkward if someone makes a calculation with 
pen and paper to consider the resulting figure as data regarding 
the pen and the paper. In particular, the person could potentially 
perform the same calculation with the same result in her head, 
which would imply that the result written on the paper must also 
be data regarding the brain of the person. Clearly, this is absurd. 
But then it is also wrong to say that the data that results from 
calculations performed on a computer is data regarding the com-
puter. If this is not true, then also Parker’s basic contention that 
“any computer simulation study classified as an experiment is first 
and foremost a material experiment” loses its ground.

The same confusion of different levels of consideration (i.e., the 
symbolic  or,  if  preferred,  the  “semantic  level”  (Barberousse, 
Franceschelli, and Imbert, 2009)) on which a computer simulation 
operates and the material level of the hardware on which it is im-
plemented, is carried over by Parker to her reading of interven-
tion. In Parker’s opinion,  intervention in a computer simulation 
study occurs when the user sets up the simulation and puts it into 
an initial state, for which purpose the user has to interact materi-
ally with the computer. What Parker appears to misunderstand at 
this  point  is that it  is not the interaction between the experi-
menter and the experimental machinery that is at stake when one 
speaks of  material experiments in contradistinction to  computer 
simulations or computer experiments but the interaction between 
the investigated experimental object and either the machinery or 
the experimenter or both. Now, in a computer simulation, the ex-
perimental object is either a fictional symbolic object or a sym-
bolic (or “semantic” for that matter) representation of a material 
object. In any case, intervention on the “experimental” object of a 
computer simulation always occurs on the symbolic level (e.g., by 
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assigning certain values to certain control variables). Thus, if one 
classifies  computer  simulation  studies  as  experiments  on  the 
grounds that they involve intervention—which is, admittedly, one 
of several typical (though not exclusive) characteristics of experi-
ments—then one still must concede that there exists an important 
difference between simulations and experiments regarding the type 
and kind of this intervention: in computer simulations, it remains 
purely symbolic and only in experiments it is material.

That is not to say that Parker is entirely unaware of the repre-
sentational nature of computer simulations. At one point Parker 
even contrasts  the  representational  quality of  computer simula-
tions  with  the  property  of  involving  interventions  that  experi-
ments have:

 
These characterizations imply at least the following fundamental 
difference between simulations and experiments: while a simulation 
is a type of representation — one consisting of a time-ordered se-
quence of states — an experiment is an investigative activity in-
volving intervention. (Parker, 2009, 487) 

However, apart from the fact that the there is at least a coun-
terpart to the representational  quality of the simulation model; 
namely, the representative quality of the experimental object, it is 
not at all clear why a simulation does not involve intervention. In 
both the simulation and the experiment, intervention consists in 
setting or changing certain conditions of the experimental system 
in a controlled way. Moreover, for both simulations and experi-
ments  there  exist  examples  where  this  kind  of  intervention  is 
achieved by: a) determining the boundary conditions through the 
setup before the experiment or simulation starts, or by b) user in-
teraction during the simulation or experiment. While this line of 
reasoning might appear to strengthen Parker’s  point about the 
comparability of simulations and experiments as scientific meth-
ods, it still does not alleviate the counterargument that experi-
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ments operate on material objects while simulations operate on 
symbolic representations. 

If we say that the experimental object is a representative, this 
means that it is a part or an instance of the target system of the 
experiment (i.e., the system in nature) the investigation of which 
was  the  purpose  of  the  experiment.  It  is  clear  that  the  pro-
grammed model that represents the target system in nature in a 
computer simulation can never be a representative in this sense. 
On the other hand, there exist experiments where the object is 
also not a representative, but merely is some kind of representa-
tion. An example would be a ripple tank that is used to study 
such phenomena as reflection and interference of waves. Although 
the waves  in the ripple  tank are  water  waves,  the  ripple  tank 
could also be used to learn something about waves of  another 
kind, like sound waves or light waves. In this case, the waves in 
the ripple tank are not an instance of the target system and there-
fore the experimental object would not be called a representative 
of the target system. One can, in this special case, speak of the 
experiment as an analog simulation and consider the experimental 
object as a representation of the target system, just as in the case 
of a computer simulation. There still remains one obvious and one 
more subtle difference, nevertheless: the object of an analog simu-
lation remains a material object, while the object of a computer 
simulation is always symbolic. This difference does not have any 
epistemic relevance in the case of analog simulations. The more 
subtle, but potentially epistemically relevant difference is that in 
the case of the analog simulations, there is still some kind of iso-
morphism involved between the object and the target, while in 
the case of computer simulations the relation remains purely rep-
resentative.
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The different types of simulations and experiments that have 
just been described are summarized in Figure 3-1. Failure to dis-
tinguish properly between computer simulations and analog simu-
lations is a constant source of error in both Parker’s and Wins-
berg’s treatment of simulations.  For example,  Parker complains 
“the proposed distinction implies that no study as a whole can be 
simultaneously both a simulation of some target system T and an 
experiment undertaken to learn about that same target system T, 
since the required relationships with T are mutually exclusive” 
(2009, 486). Then, she continues by presenting an example of a 
study that according to her interpretation is simultaneously an ex-
periment and a simulation. Not surprisingly, her example of the 
San Francisco Bay Model concerns an analog simulation. However, 
this merely shows that the categories of simulations and experi-
ments are not mutually exclusive in the first place. At the same 
time, it does not imply that there is no epistemically relevant dif-
ference between (computer) simulations and experiments that are 
not analog simulations, which is the conclusion that Parker sug-
gests. In a similar vein, Winsberg (2009) complains that “if we 
can never be sure if something is an experiment or a simulation” 
it would not be worth knowing that, as Mary S. Morgan (2003) 
maintains,  “experiments  are  more  epistemically  powerful  than 
simulation”  (Winsberg,  2009,  582).  However,  doubts  whether 
something is an experiment or a simulation can arise only in the 
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case of analog simulations. Even here is possible to distinguish 
analog simulations from plain experiments by their relation to the 
target system, as depicted in Figure 3-1.

Another point that Parker makes deserves more consideration; 
namely, that “what is ultimately of interest when it comes to jus-
tifying inferences about target systems is not materiality, but rele-
vant similarity” (Parker, 2009). This is quite true, because mate-
rial similarity does not automatically transform into epistemic re-
liability. In addition, numerical representations of nature in com-
puter simulations can be quite accurate at times. Still, being of 
the same material stuff can be a good reason to assume relevant 
similarity (which Parker concedes); in some cases, it may be the 
sole reason. It must be expected that this is particularly true for 
those processes in nature about which we do not yet have compre-
hensive theoretical background knowledge in terms of either fun-
damental  laws  or  at  least  well-tested  phenomenological  laws. 
Parker seems to be faintly aware of the connection between the 
existence of background knowledge and the possibility to simulate: 
“especially when scientists as yet know very little about a target 
system, their best strategy may well be to experiment on a system 
made of the ‘same stuff’” (Parker, 2009, 494). However, she does 
not seem to be aware that in this case it is not just an option 
(“best strategy”) but a necessity to conduct real material experi-
ments. As the frontier of science is being pushed forward, one can 
assume that greater and greater regions of nature fall  into the 
realm of what can reliably be simulated based on our scientific 
background knowledge. However, there will always remain scien-
tific questions for which material experimentation is unavoidable.

Winsberg,  in  his  paper  entitled  “A Tale  of  Two  Methods” 
(2009), maintains that simulations and experiments can only be 
distinguished by how scientists argue for their validity. He does 
not notice that it would be impossible to argue in different ways 
for the validity of either simulations or experiments if there did 
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not exist other differences on which the different arguments could 
be founded.2 Indeed he implicitly admits this when he says of the 
experimenter that “She believes the inferences she will make are 
legitimate because she is prepared to argue that the two systems 
are, in relevant respects, the same kind of system, made out of the 
same material, and can be expected to exhibit relevantly similar 
behavior” (Winsberg, 2009, 590). However, this means that the 
experimenter relies on a relevant material similarity. So then, rele-
vant material similarity must be another difference between simu-
lations and experiments, besides the different justifications given 
for the respective methods. If it were not, it would not be under-
standable why the simulationist should not appeal to the same 
reason when justifying his or her procedure. Regarding the simu-
lationist, Winsberg claims that he or she “will want to argue . . . 
that the computational model of his computer is relevantly similar 
to a good model of the behavior of the gas jets that interest him” 
(Winsberg, 2009, 590). However, this is an argument based on for-
mal similarity, which means that formal similarity in contrast to 
material similarity must be an exclusive feature of simulations, if 
the justification based on formal similarity is to be exclusive to 
the simulationist.  Otherwise, Winsberg’s thesis that simulations 
and experiments differ by the way they are  justified would be 
empty. Thus, Winsberg is forced to admit the validity of Guala’s 
(2002) distinction between material and formal similarity that he 
tries to deny in his paper.

This is not the only contradiction in Winsberg’s paper. In or-
der to explain his point, Winsberg sets out with the thought ex-
2 Against this criticism of Winsberg, an anonymous referee objects, “two claims 
can be justified in different ways but have the same epistemic warrant.” However, 
since the epistemic justification of a scientific procedure usually consists in explain-
ing or pointing out what its epistemic warrants are, it is hard to see how this is 
possible in this context. Moreover, as the passages quoted in the following pages 
from Winsberg demonstrate, he is unable to uphold his position that simulationists 
and experimenters rely on the same epistemic warrants when they justify their 
method.
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periments of two physicists, one using a tank of fluid, the other 
using  a  digital  computer  to  study  fluid  interaction.  In  other 
words,  one  scientist  is  conducting  a  material  experiment;  the 
other,  a  computer  simulation.  At  one  point  he  concretizes  his 
story as follows: “what if we were to find that both of our original 
physicists’ primary area of interest is astrophysics? The systems 
that actually interest them are supersonic gas jets that are formed 
when gasses are drawn into the gravitational well of a black hole” 
(Winsberg, 2010). With respect to this setting, Winsberg remarks: 
“neither physicist, then, is actually manipulating his or her actual 
system of interest. Neither one is even manipulating a system of 
the  same  type,  on  any  reasonably  narrow  sense  of  the  term” 
(2010, 52). Thus, we are to assume that simulation and experi-
ment cannot be distinguished by whether the actual system of in-
terest is manipulated. However, only a few lines later Winsberg 
maintains exactly the opposite: “in some respects, the physicist’s 
tank is an instance of the system of interest, since it is in fact an 
instance of a supersonic interaction of a pair of fluids.” Now, how 
can a system that is not a “system of the same type, on any rea-
sonably narrow sense of the term” be at the same time an “in-
stance of the system of interest”? Winsberg denies that there ex-
ists  a  distinction  between simulations  and  experiments  that  is 
more fundamental than the different kinds of justification for ex-
periments and simulations  respectively.  It  seems,  however,  that 
this denial rests in part on a self-contradictory analysis of the cen-
tral thought experiment of his paper.

Another objection that Winsberg raises against the distinction 
is “on the Simon/Guala definitions of simulation and experiment, 
they are both success terms. An investigation will count as an ex-
periment only if it is successful in the sense that the relevant ma-
terial similarity between object and target actually obtain” (Wins-
berg, 2009). He concludes from this that in this definition if an ex-
periment failed to establish a relevant material similarity then it 
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would not be a failed experiment but it would simply fall into the 
other category (i.e. simulation), which seems wrong to Winsberg. 
With respect to this, he worries that “if experiment and simula-
tion are success terms, then investigators may never be in a posi-
tion to know if they are conducting a simulation or an experi-
ment.”  However,  Winsberg  (2009),  following  a  suggestion  from 
Parker, already offers the obvious counterargument against his ob-
jection; namely that “simulation studies are characterized by the 
fact that the investigators aim for their objects to have relevant 
formal similarities to their targets and that ordinary experiments 
are characterized by the fact that the investigators aim for their 
objects  to  have  relevant  material  similarities  to  their  targets.” 
Winsberg never answers this counterargument. Instead, he contin-
ues: “I do not think this works. I think the whole idea of formal 
versus material similarity is confused, no matter how much it is 
tempered by ‘relevant,’ ‘aimed for,’ or whatever.” That is, Wins-
berg reasserts his opinion but does not offer an argument.

Margaret Morrison does not buy Parker’s argument that com-
puter simulations are also somehow material: “locating the mate-
riality of  computer experiments in the machine itself,  however, 
carries with it no epistemological significance,” she notes (2009). 
Nevertheless, she reaches the similar conclusion that “the model-
ing features of simulation are co-extensive with its experimental 
character  making any epistemically relevant differences between 
experiment and simulation very difficult to articulate.” More pre-
cisely, her claim is “that the way models function as the primary 
source of knowledge (…) is not significantly different” (Morrison, 
2009). But this is obviously false, because in a simulation it is a 
model that produces the data, which is impermissible in a mate-
rial experiment.3 In a similar vein, Morrison maintains “experi-

3 See also Peschard (forthcoming) who utters a very similar criticism of Morrison 
and nicely summarizes her complaints: “Admittedly, we ‘know’ of the features of 
the system that affect the instrument only in so far as we ‘know’ of the relation 
between these features and the state of the instrument; that is, only in so far as we 
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mental measurement is a highly complex affair where appeals to 
materiality as a method of validation are outstripped by an intri-
cate network of models and inference” (Morrison, 2009). However, 
one of her own examples, magnetic resonance imaging (MRI), sug-
gests the opposite. For, in order validate that an MRI scanner 
works correctly, it is, among other things, tested with material ob-
jects. And when it is put to use in medicine, it is done so because 
it is able to reveal material features of the body or body part un-
der examination and thus is able to validate or refute assumptions 
about health or illness by an appeal to materiality.4 Because de-
vices like an MRI scanner are diligently built to determine mate-
rial properties of the objects under study, one could say that the 
“intricate network of models and inference” is tailored to the ex-
pression of the materiality of the object, rather than outstripping 
the appeal to materiality.

As we have mentioned earlier, with the scientific frontier mov-
ing onward, it is imaginable that increasing ranges of natural phe-
nomena  can  be  simulated,  thereby  potentially  outstripping  the 
need for experiments. This is, however, something completely dif-
ferent from maintaining that the appeal to materiality can be out-
stripped by models and inference in those cases where material 
experiments are still conducted. One might speculate that in fu-
ture science there will be a growing dependence on observations 

have and are justified in using a given model of the instrument. But to say that 
this mediating role of model makes causal interaction in experimentation epistemi-
cally irrelevant looks like saying that the role of language in expressing our sensory 
experience makes the sensory character of this experience epistemically irrelevant.”
4 According to an anonymous referee I have misunderstood the point that Morri-
son wanted to make with her example of MRI. I am aware that Morrison has sev-
eral things to say about MRI. It is just this specific consequence about the relative 
epistemic weight of material factors and models that I intend to criticize. In the 
worst case my criticism only touches an unfortunate formulation by Morrison. Be-
cause Morrison formulates more or less the same idea in different ways at several 
points of her paper, I am inclined to believe that she means what she says at this 
point.
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that are made with intricate and highly technicized measurement 
devices and continuously less reliance on ordinary sense percep-
tion. However, it is doubtful whether the point where sense per-
ception becomes superfluous as a means of scientific investigation 
will ever be reached. One can say with Humphreys (2004) that 
this increases the epistemic opacity or that a greater and greater 
part of the epistemic processes that lead to knowledge will take 
place hidden from our eyes. But even then, humans will remain in 
the epistemic center, because it is humans that build and design 
the epistemic machinery that they make use of. However, the path
—or, more likely, some of the paths—to the periphery where the 
epistemic machinery gets into contact with the world will continu-
ously be extended.

Morrison may have been mislead into likening experiments to 
models by her own historical example, which she presents at the 
beginning of her paper. For the purpose of commenting on the 
contemporary discussion about models and experiments, this ex-
ample unfortunately does not appear to be particularly well cho-
sen. The example concerns Lord Kelvin’s interpretation of electro-
dynamics. “As I mentioned at the outset, Kelvin saw mechanical 
models as intimately connected to measurement and experiment. 
He considered numerical  calculation measurement as  long as it 
was performed in the context of model construction, testing, and 
manipulation. All of these features enabled one to know an object 
‘directly’  rather than simply becoming acquainted with a mere 
representation.” (Morrison, 2009). This can be misleading if ap-
plied  to  the  contemporary  discussion,  because  it  seems  that 
Kelvin’s notion of knowing an object “directly” rests entirely on 
an  ontological  commitment  of  Kelvin’s  in  favor  of  mechanical 
models and explanations. Other than that, his jelly bowl (Morri-
son, 2009, 37) is just another example of what we call analog sim-
ulations and as such, it is just as remote from its target system as 
Maxwell’s  mathematical  equations.  Therefore,  the  example  of 
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Kelvin is not a good example for showing, as Morrison seems to 
intend, that material experiments do not have a more direct rela-
tion to their target systems than simulations and that appeals to 
“knowing an object directly” through a certain kind of scientific 
method are badly founded. The appeal is merely badly founded in 
Kelvin’s case. Incidentally, we see again how important the clear 
distinction between plain experiments and analog simulations is 
for the whole discussion.

Briefly summing it up: none of the arguments against the sepa-
ration of simulations and experiments by Parker, Winsberg, and 
Morrison appear to be pervasive.5 However, there is one point by 
Parker that ought be kept in mind; namely, that in any concrete 
case what ultimately matters is not the materiality of the proce-
dure nor primarily whether the relation to the target system is a 
material or a formal similarity, but whether a relevant similarity 
can be established.

Arguments For the Difference
between Simulations and Experiments

Having refuted the arguments against making a difference be-
tween simulations and experiments, the question remains: what 
positive arguments are there for drawing a strict distinction be-

5 According to an anonymous referee, this misrepresents Winsberg’s, Parker’s and 
Morrison’s position, because none of them believes that simulations and experi-
ments are one and the same thing, but only that in some cases they may have the 
same epistemic warrants. My primary goal is not to criticize Winsberg, Parker and 
Morrison, but to refute those arguments that have been put forward against the 
difference between simulations and experiments. I have pointed out above some of 
the few concessions these authors make in the discussed papers in favor of the dis-
tinction between simulations and experiments. In no way do the discussed papers 
support the conclusion that Winsberg, Parker, and Morrison restrict themselves to 
some cases only. But even if restricted to some cases, most of their arguments re-
main false and seriously misleading. 
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tween simulations and experiments? There appear to be at least 
three fundamental and important differences between simulations 
and experiments, which I will discuss below.

Only experiments can operate on a representative of the target 
system

Operating on a representative of the target system means that 
the object that is manipulated and studied in the experiment is 
either a part of or an instance of the target system or is the target 
system itself. In contrast, both analog and computer simulations 
operate only on a representation of the target system. In the case 
of analog simulations, this is true in virtue of the definition of an 
analog simulation as an experiment that operates on a representa-
tion of, rather than on a representative of, the target system. In 
the case of computer simulations, this is true by necessity as long 
as the target system is a target system in nature.6 Both the rela-
tion of being representative of and that of being a representation 
of a target system raise the analogous question of whether the re-
spective relation truly holds. But this does not mean that both 
questions are one and the same. For establishing either of these 
relations provides a different challenge. Generally speaking, estab-
lishing the relation of representation requires comprehensive back-
ground knowledge about the target system, while the relation of 
being a representative can be established (though, as always, with 
a probability of error) on the basis of other indicators. For exam-
ple, if one wants to know whether some kind of wood burns at 
250°C it suffices to take a piece of that wood to establish the rela-
tion of representative of (in this case, in the sense of being part of 

6 One can also conceive of a model as a target system of a computer simulation. 
But this is a special case which in an epistemic connection is not at all comparable  
to the case where the target system is a system in the real world.
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it). However, before one could be sure that a certain computer 
model of a piece of wood is truly a representation of that kind of 
wood, one would either need a comprehensive knowledge of the 
chemical  structure of the kind of  wood in question and of the 
chemical laws guiding oxidation, or one would at least need to 
know sufficiently detailed phenomenological laws about the burn-
ing of wood as to allow one to draw conclusions about the tem-
perature at which the particular kind of wood in question starts 
to burn. Thus, the difference between representation of and repre-
sentative of is a highly relevant epistemic difference.

This difference in relation to the target system can also be de-
scribed as the difference between  material similarity and  formal 
similarity (Guala,  2002).  Material  similarity is  the  relation be-
tween the experimental system and the target system in the case 
of an experiment. Formal similarity holds between the simulation 
system and the target system in the case of computer simulations.

The case of analog simulations is ambiguous with respect to 
this terminology, and requires clarification as to whether material  
similarity also  covers  the  similarity  of  different  materials  that 
obey the same laws. If this clarification is made or if the case of 
analog simulations is excluded, then Winsberg’s (2009) criticism 
of this terminology can be circumvented. Another phrase that has 
been  used  to  describe  material  similarity  is  the  phrase  “same 
stuff.” This phrase is less ambiguous than the phrase “material 
similarity,” because it clearly suggests that the material must be 
the same.

Only experiments can deliver knowledge to us
that goes beyond what is implied in our background knowledge

Because computers are merely calculating machines, they can-
not provide us with any knowledge about the world beyond what 
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is  implied  in  the  premises  of  a  computer  simulation.  As  the 
premises must be rooted in our prior knowledge, the insights one 
can gain from computer simulations is limited to this prior knowl-
edge and its implications.7 The same does not necessarily need to 
be true of analog simulations. In order to be meaningful, an ana-
log simulation only requires that the mapping relation (typically 
an isomorphism) between the object that serves as a stand-in for 
the target and the target system itself is known, but not that the 
laws of nature that govern the object are known as well. There-
fore, the object could potentially reveal a behavior that is not 
merely a logical consequence of our prior knowledge. If we assume 
that the mapping relation is applicable nonetheless, then the nov-
elty exposed by the object’s behavior carries over to the target 
system as well. It may of course be disputed whether this assump-
tion is true or whether it has much practical impact. But the case 
is at least imaginable.

Because of this limitation, computer simulations can be best 
thought of as tools for evaluating the consequences of an existing 
stock of knowledge. But only experiments (potentially including 
analog simulations in the hypothetical  case just described) can 
break through the epistemic barrier that  is  determined by our 
prior knowledge and to which computer simulations are inevitably 
confined.

One can speculate whether one day our background knowledge 
will  be  so  complete  that  we  can  deduce  any  possible  further 
knowledge about the world from it. This, however, is pure science 
fiction and it seems as good as impossible within the limitations 
of the conditio humana that it should ever become real.

7 It is important here to understand the difference among a) things that are not 
logically implied in our prior knowledge, b) things that are logically implied in our 
prior knowledge but unknown to us and c) things that are logically implied in our 
prior knowledge and known to us. For category a, simulations cannot help us, only 
experiments can help. For category b, simulations and experiments can help us. Fi-
nally, for category c neither is needed because we know it already.
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Only experiments can be used to test fundamental theories

Can simulations be used to test hypotheses? They can,  but 
only against the background of an existing theory. It may be the 
case that this theory can in turn be tested via simulations against 
another more fundamental theory. But at some point we reach a 
most fundamental theory, which cannot be tested by a simulation 
any more, because no theories or principles remain upon which 
such a simulation could be built. Thus, it is for basic reasons im-
possible to replace an experimentum crucis by a simulation. And 
this is true for both computer simulations and analog simulations, 
because an experimentum crucis requires that the investigated ob-
ject be a representative of the target system, the particular nature 
of which is in question.

What counts as fundamental theory is, of course, historically 
relative. For example, Galileo’s laws of motion and Kepler’s laws 
of the movement of the planets were both fundamental theories at 
the time of their invention. Both, however, can be derived from 
Newtonian mechanics and, therefore, they lost the status of fun-
damental theories, which was then taken by Newtonian mechan-
ics. Once Newtonian mechanics were accepted, Kepler’s laws could 
also be tested by simulation (though this is strictly speaking un-
necessary, because they could be derived mathematically already). 
But then this simulation does not replace an experimentum crucis 
of a  fundamental theory anymore. Since at any past, present, or 
future point in the history of science there will exist at least one 
theory that is the most fundamental theory, material experiments 
will still be needed to test at least this fundamental theory. Even 
if we assume the hypothetical scenario above, where humanity has 
accumulated sufficient knowledge to derive everything else that is 
worth knowing from this knowledge, material experiments would 
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still be needed to justify the fundamental theories that are part of 
this set of knowledge.

Further differences and conclusions

One can easily think of further differences between simulations 
and experiments: as mentioned earlier, experiments are material 
in the sense that the object under investigation is a material ob-
ject. Simulations in contrast are virtual in the sense that the ob-
ject that is investigated is a semantic representation. The criterion 
of materiality should not be confused with the relation of material 
similarity. Materiality as such concerns only the object under in-
vestigation and not the relation between object and target (see 
Figure 3-1). With respect to the relation of material similarity, 
materiality is a necessary but not a sufficient condition, because 
an analog simulation is also material but not of the “same stuff” 
as its target. Since it does not allow us to distinguish analog simu-
lations from other experiments, materiality alone is a compara-
tively less important criterion for the distinction than, say, mate-
rial similarity.

Yet,  another difference is that  experiments are an empirical 
method  while  computer  simulations  remain  purely  theoretical. 
Again, the case of analog simulations may be a cause of ambigu-
ity, because by virtue of the materiality of their object, analog 
simulations could be considered empirical just like ordinary exper-
iments,  but they do not deliver empirical knowledge about the 
target system to us.

Overall,  we  find that  there  are  sufficiently  many  and  suffi-
ciently important differences  to warrant an epistemological  dis-
tinction between simulation methods and experimental methods. 
This said, it cannot be denied that it is a fact that in modern sci-
ence both methods, the experimental method and the simulation 
method, are frequently used in close connection with each other. 
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Does this mean that they merge into complexes where simulations 
and experiments become indistinguishable? We will now turn our 
attention to this question.

The Challenge of Hybrid Methods

In  contemporary  science,  experimental  methods  are  often 
closely intertwined with simulations or with simulation-like com-
putational procedures. Simulations can be used to determine the 
optimal experimental  design before experiments are carried out 
(Kramer and Radde, 2010). Computational methods can be used 
to select experimental data for further analysis while the experi-
ment  is  run,  as  is  done  in  particle  accelerator  experiments 
(CERN, 2011). They can furthermore be employed to post-process 
the raw data from measurements as, for example, in computed to-
mography (Lee and Carroll, 2010). In economics, experiments usu-
ally involve real human subjects that are placed in an artificial en-
vironment that differs substantially from the sort of real-world en-
vironments to which scientists try to apply results from the exper-
iments and draw conclusions (Guala, 2002, 2012). Sometimes the 
artificial environment contains computer agents that interact with 
humans in the experiment. In the natural sciences, we also fre-
quently encounter cases where empirical measurements and simu-
lation  methods  jointly  function  as  sources  of  data.  Multiscale 
models  of  electrocardiac  physiology,  described  by  Annamaria 
Carusi, Kevin Burrage, and Blanca Rodriguez in another chapter 
of this book as model-simulation experiment systems, may serve 
as an example.

To give a name to these kinds of sophisticated procedures, we 
can speak of them as hybrids of simulations and experiments. Hy-
brid methods constitute a challenge for the philosophy of science 
in several respects. They challenge the distinction between simula-
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tions and experiments that has been defended above. Doing so, 
hybrid methods also challenge the logic of scientific research in 
general. For the logic of scientific research, as understood by most 
scientists and by many philosophers of science, rests on the testing 
of  hypotheses  against  empirical  data.  This  presupposes,  one 
should assume, a clear distinction between the empirical and the 
theoretical. To put it in another way, if we cannot uphold the dis-
tinction between the theoretical and the empirical, then we would 
have to reconstruct the whole logic of scientific research. 

The  distinguishing  features  between  simulations  and  experi-
ments presented earlier do not really solve the problem of hybrids, 
because they only tell us what the difference between the cate-
gories of experiment and simulation are. However, they do not al-
low us in all cases to decide whether a particular procedure be-
longs to the class of simulations or to that of experiments. If we 
follow the reasoning of the first part of this chapter, then we know 
that only experiments can operate directly on the target system. 
But we may not be sure in a particular case whether some scien-
tific procedure that makes scant use of some sort of empirical data 
and heavy use of computation falls into this category.

To solve  the problem of  hybrids,  several  quite  different  ap-
proaches are imaginable. One can even say that so far neither the 
framing nor the exact formulation of the question is clear. I am 
not going to attempt to give a comprehensive list of approaches to 
the problem of hybrids that have been proposed so far or that ap-
pear imaginable,  but I  will  confine myself  to the discussion of 
three approaches. Other authors have suggested two of these ap-
proaches;  I  briefly  present  them  here  since  I  consider  these 
promising. After that I am going to present my own best guess at 
how the problem of hybrids could be solved.
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Hybrids as Mixtures of Empirical and 
Virtual Data Sources (Zacharias/Lenel)

Guala (2002)  considers  as  hybrid methods  economic experi-
ments where real human agents act in an artificial laboratory situ-
ation. Let us, for the sake of simplicity, imagine an experiment 
where human agents interact with computer agents. Generalizing 
from this case and adjusting it to the terminology developed in 
the first part of the paper, this leads to one possible definition of 
hybrids as procedures where the data source is partly empirical 
and partly virtual.

How does this relate to our earlier distinction between simula-
tions and experiments in light of the material or formal similarity 
of object and target? Well, the example shows that both the ob-
ject under study and the target can be complex entities that are 
made of different components. The material similarity that makes 
the method an experiment may hold only for some components of 
the object and target but not for others. 

As a consequence of this, the differences between simulations 
and experiments that have been described earlier apply only inso-
far as such components of the object under investigation are con-
cerned that do actually bear a material similarity to (parts of) the 
target  system.  One  could  classify  hybrids  (in  the  just-defined 
sense) as experiments, if one were willing to weaken the formula-
tions of the differences a bit; for example, by allowing that it suf-
fices that at least one component of the object is a part of or an 
instance of some part of the target system. However, this would 
be a somewhat strained attempt to keep up a strict dichotomy be-
tween simulations and experiments.

A much better solution has been proposed by Moritz Lenel and 
Sebastian  Zacharias  (unpublished).  They give  up the strict  di-
chotomy in favor of a cross-classification of simulations and exper-
iments (first dimension) and of laboratory and field methods (sec-
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ond dimension). In order to do, so they drop the idea of a mono-
lithic target system. Instead, they differentiate between the target 
object and the target situation. Experiments and simulations are 
then distinguished by whether they operate directly on the target 
object or on a representation thereof. Laboratory research is dis-
tinguished from field research by whether it takes place in the tar-
get situation or in an artificially crafted laboratory environment. 
This classification scheme works quite well for economic experi-
ments and simulations and for the social sciences in general. Eco-
nomic experiments would most of the time fall under the category 
of laboratory experiments, but there is also room for laboratory 
simulations, field simulations, and field experiments.

It is an open question how well this or a similar scheme could 
work in the natural sciences. In addition, the case where human 
agents act together with computer agents in the same situation on 
an economic experiment might strain the classification. Still, it is 
so far one of the most convincing answers to the problem of hy-
brids.

Classification in Terms of 
the Degree of Materiality (Morgan)

A quite natural approach would be to examine to what extent 
the method employed depends on materiality (i.e., material data 
sources,  material  interaction,  material  output)  throughout  the 
course of the simulation or experiment in question. This is the ap-
proach that  Mary S.  Morgan (2003)  has  taken.  Doing so,  she 
reaches a fine-grained classification that ranges from lab experi-
ments over “virtually experiments,” “virtual experiments” (which 
are  not  the same as  “virtually experiments”!)  to mathematical 
model experiments. Morgan takes into account the material status 
of input, intervention, and output, but also the relation between 
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object and target where, again, she carefully distinguishes between 
“representative of,” “representative for,” and “representation of.” 
Morgan’s “Experiments without material intervention” (2003) is 
also one of the few attempts to explicitly deal with hybrid meth-
ods. I will not attempt to do justice to her careful and well-rea-
soned examination here. However, a few remarks are in order.

First, while it seems reasonable to consider the materiality or 
nonmateriality  of  the  intervention  for  distinguishing  degrees  of 
virtuality, it is not equally clear why the material or nonmaterial 
status of the inputs or outputs should really matter. A simulation 
can start with empirical input data of some system and then cal-
culate the future evolution of the system. However, this would not 
make the simulation any more experimental. The most that can 
be said is that materiality of input data is a necessary but not 
sufficient requirement for a procedure to be an experiment or em-
pirical measurement. As will be argued below, it is, if anything at 
all, the relation between the input and the output what makes a 
hybrid an experiment or a simulation. 

Mary Morgan’s distinction between representative and repre-
sentation is more convincing. Although it is very helpful for dis-
tinguishing experiments from simulations, it does not seem fit to 
solve the problem of hybrid methods, because—as has been ar-
gued above—the problem arises when both relations are present 
in the course of one and the same procedure. As sample cases, 
Morgan examines two different simulations of hipbones. They dif-
fer in the way the model of the hipbone is obtained on which the 
simulation is carried out. In one case, the model is obtained by 
cutting  one  particular  hipbone  into  slices  and  determining  the 
three-dimensional structure of the hipbone from these slices. In 
the other case, the scientists started with a stylized bone model 
that is then refined: “the individual side elements within the grid 
are given assorted widths based on averages of measurements of 
internal strut widths (taken from several real cow bones) and are 



- 28 -

gently angled in relation to each other by use of a random-assign-
ment process” (Morgan, 2003, 222). Only in the first case is the 
input data clearly of empirical origin. The other case could— from 
the description given by Morgan—alternatively be interpreted as 
an example of a theoretical model that is adjusted or corrected 
with empirical data. For Morgan, the first simulation is therefore 
more like a material  experiment than the second, and both lie 
somewhere between pure material experiments and pure mathe-
matical modeling.

The  stance  I  have  adopted  leads  to  a  different  evaluation, 
though.  According  to  the  view I  advocate,  both  examples  are 
clearly simulations. The reason is that the empirical origin of the 
input data alone is not sufficient to classify a procedure as experi-
mental, or even partially experimental. In either of the two cases 
described by Morgan, it is only the input data what is empirical. 
The object that is manipulated during the study, however, is obvi-
ously a model. According to Morgan’s description, “in both cases 
(…) the experiment consists of the ‘application’ of a conventionally 
accepted (…) mathematical version of the laws of mechanics (…) 
The computer experiment calculates the effects of the ‘force’ on 
individual elements in the grid and assembles the individual ef-
fects into an overall  measure of the strength due to structure” 
(2003, 221).

The last description seems to fit one of our earlier characteriza-
tions of simulations in contrast to experiments quite well; namely 
that in a simulation it is a model and not a material object that 
produces the simulation data. This characterization is not as clear 
as it may seem at first glance though, because it requires that we 
can always distinguish the case where a model that is set up with 
empirical parameter values produces simulation data from cases of 
mere  refinement  of  empirical  input  data,  like,  for  example,  by 
noise reduction algorithms. In the examples that Morgan presents, 
however, it seems clear enough that the data is produced by pro-
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grammed models in a way that goes beyond the typical inferential 
patterns that can be found in measurements.  That the models 
have been created from empirical data does not contradict this 
finding.

Classification in Terms of the Relation 
Between Input and Output

In the following, I present my own best guess at how to answer 
the problem of hybrids. As stated earlier, the best way of framing 
the question in my opinion is to ask how computer simulations 
that make use of empirical input data can be distinguished from 
empirical  measurements  that  involve  the  computational  refine-
ment of raw data. The difference can, I believe, easily be made 
clear with the help of examples. 

Think for example of a climate simulation: a climate simula-
tion calculates the future development of the climate. In order to 
do so it is fed empirical data. Thus, both components of a hybrid
—empirical input data and the computational processing of this 
data—are present. Yet, it is clear that a climate simulation is a 
simulation and not a measurement,  because it  is impossible to 
measure something that lies in the future. 

Now take as another example an MRI scan: again both compo-
nents of a hybrid are present: the object or the person in the scan-
ner from which the empirical input data is recorded in form of 
electromagnetic waves that are emitted in response to the prior 
excitation of its H-atoms and the computational processing, which 
in this case produces a visual image of the internal structure of 
the object from the input data. While the classification may be 
not quite as indisputable as the example of the climate simula-
tion,  it  still  appears  reasonably clear  that  this  is  an empirical 
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measurement, because the object’s structure is reconstructed from 
data that reflects this structure.

As clear as the example cases may be, it is more difficult to 
find  general  criteria  by  which  to  decide  whether  a  particular 
method or procedure belongs to the class of simulations or to that 
of measurements (or experiments for that matter). In the follow-
ing, I am going to attempt an answer in two steps. The uniting 
idea for both steps is the assumption that the difference between 
simulation-like hybrids and measurement-like hybrids can best be 
spelled out in terms of the relation that exists between quantities 
that the output data represents and the quantities that the input 
data measures.8

 

A first approach: The same-system formula

Following the idea that one feature that distinguishes experi-
ments from simulations is that experiments can operate on the 
physical target system itself, one can formulate the following crite-
rion:

Same-system formula: a hybrid procedure is a measurement if 
its output data describes the same system in the same state as 
its input data.9

 

8 The relation between input and output that is meant here is not to be confused 
with the transformation function that transforms the input data into output data. 
Rather it concerns the relation of the input and output values within the target 
system. Examining the nature of the transformation from input to output might 
provide yet another alternative way to deal with the problem of hybrids. Neverthe-
less, this alternative is not examined here.
9 It might be worthy of notice that the input of the computational part of a hybrid 
always has a precisely and unambiguously defined magnitude; namely the digital 
data as it is entered into the computer (either by hand or by a digitizing device)  
before any calculations on this data have been carried out.



- 31 -

One can easily check that this criterion works well with the 
two examples given above: the output of the MRI scan is obvi-
ously data about the very system that the input data is taken 
from, and it is about the system in exactly that state in which the 
input data was recorded. Although in the case of the climate sim-
ulation one could say that the input and output system is the 
same; namely, the climate system, the output clearly concerns the 
system in a future state and therefore in another state than the 
input. The same-system formula therefore correctly places it in 
the class of simulations.

The same-system formula works well  enough in many cases, 
but unfortunately not in all cases. Imagine a similar case as Mary 
Morgan (2003) discusses: we determine empirically the structure 
of a particular hipbone. Then, we run simulations where pressure 
is put on the hipbone in order to estimate the strength of this 
hipbone. The hipbone’s strength is thus inferred by a calculation 
from its structure. Now, measurements often involve some kind of 
inference, but usually this is backward inference, where we mea-
sure the deeper causes of a phenomenon by some overt phenome-
non (e.g., we measure the temperature by the extension of the liq-
uid in a thermometer). However, in the case of the hipbone, the 
inference  goes  in the other direction.  It therefore  appears very 
doubtful whether one could call this a measurement of the hip-
bone’s strength.

A second approach: The measuring-the-cause-by-its-effects 
pattern

Since the same system formula fails as a sufficient criterion for 
classifying hybrids, a subtler criterion is needed. Spelling out the 
same idea that only experiments operate on the physical target 
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system itself, I propose the following two criteria for classifying 
hybrid procedures as measurements:

 
1. Spatiotemporal concordance of source and output: the output 

values have the same spatiotemporal location as the source val-
ues.

2. Causal dependency of input on output: the output values are ei-
ther a necessary (!) cause for the input values, or the output 
values are linked by definitions or mathematical laws to the in-
put values.

The first criterion makes sure that neither prognoses nor retro-
dictions (i.e., inferences about past events based on present obser-
vations) are accidentally classified as measurements. The second 
criterion reflects the well-known pattern of measuring a magni-
tude by its causal effects. For example, if one measures the force 
through the expansion of a spring. The further qualification that a 
link by definition or mathematical laws suffices is meant to cap-
ture such simple cases such as measuring the density by measur-
ing and then dividing the weight and the volume of an object. If a 
hybrid procedure is found to be a measurement by these criteria, 
then we can also speak of the input data as raw data and the out-
put data as refined data, thereby indicating that in the case of a 
(computationally enhanced) measurement, the input and the out-
put data still concern one and the same thing. There exists an 
overlap between both criteria insofar they exclude prognoses, al-
though this overlap is harmless. One can easily verify that neither 
criterion is superfluous in the sense of preempting the other crite-
rion.

We speak here of “values” rather than “data,” because data is, 
strictly speaking, an entity located in a computer and causally 
linked to the software that processes it. What matters here, how-
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ever,  are  the  magnitudes  in  nature  that  the  data  informs  us 
about. We understand “values” as always having the time, loca-
tion, and causal connection to their occurrence in nature. In addi-
tion, it should be noted that in the first criterion we do not refer 
to input values but to source values.10 This accounts for the fact 
that the measuring device can be located more or less remotely 
from its object. For example, a person observing an explosion may 
hear a noise and see a flash of light, both of which occur at a dif-
ferent time to the observer. Because of this, it would not be useful 
to require spatiotemporal concordance of the input values. Admit-
tedly, introducing the concept of source values here raises ques-
tions regarding the relation between source values and input val-
ues. Since the source values cannot directly be observed, it re-
quires at least a further inferential step to reconstruct the source 
values from the input values. It would take us too far afield to go 
into this problem here. Therefore, it must be noted as an open 
question.

In  order  justify  the  proposed  criteria  for  classifying  hybrid 
methods, we will briefly go through a number of typical examples 
of hybrid methods and try to show that the classification accord-
ing to these criteria is sound in the sense of matching the intu-
itions one might have about the particular examples.

I have already mentioned climate simulations as probably the 
most well known example of simulations in science. Climate simu-
lations are based on empirical input data, but clearly they do not 
constitute  experiments  or  empirical  measurements  themselves. 
The output of climate simulations concerns the future develop-
ment of the earth’s climate. It would seem awkward to consider 
climate simulations as a measurement of the possible future cli-
mate. As the output does not fall into the same spatiotemporal 
region as the source, climate simulations are also not measure-

10 This distinction relates to Paul Humphreys’ distinction between source data and 
accessible data. See Figure 1-1 of Humphreys’ article in this volume.
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ments according to our two criteria listed above. Thus, the classi-
fication of climate simulations according to our criteria is in har-
mony with our intuition and the self-ascription by scientists.

Another  famous  example  of  the  most  advanced  kind  of 
“technoscience” is the Large Hadron Collider (LHC). An interest-
ing peculiarity of the Large Hadron Collider is that from the enor-
mous number of events occurring during one second in the col-
lider, only a number of events that is several magnitudes smaller 
is preselected11 by automatic procedures for further examination 
(CERN, 2011). This nicely illustrates the idea of epistemic opac-
ity, which, according to Humphreys (2004), is one of the charac-
teristic features of modern computer-based science: It is the com-
puter that decides which data will be selected and it is in princi-
ple impossible for any human agent to double-check each individ-
ual decision, even though the algorithms for that decision were of 
course developed by humans.

According to our criteria, which remain neutral with respect to 
the selection and preselection of data, the LHC data still counts 
as experimentally measured data. This is in accordance with the 
self-description of the LHC project, which also speaks of experi-
ments. It is reasonable to do so, because the events selected by 
the computer for further analysis are still empirical events that 
occurred in the collider itself. 

It is more difficult to decide how computational post-process-
ing of data affects its status as empirical data. In magnetic reso-
nance imaging, the raw data obtained from the electromagnetic 
signals emitted by the previously stimulated protons of the body 
are turned into an image by means of various highly sophisticated 
computations (Lee and Carroll, 2010). According to our criteria, 
magnetic resonance imaging falls still into the category of experi-
mental measurement, because the output is an image of the struc-
11 LHC terminology speaks of “reprocessing” of data. However, since the data is 
not changed but merely is a subset of data filtered from a larger set of data, we 
use the term “pre-selection” here to avoid misunderstanding.
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ture of the body, but it is just that structure of the body that de-
termines what the electromagnetic signals (i.e., the raw data) are 
like. In this sense, the output values are causally responsible for 
the input values. Simultaneously, both output values and source 
values lie in the same spatiotemporal region. But not only accord-
ing to our criteria— intuitively it also makes sense to consider 
magnetic  resonance  imaging as  a  measurement.  For  it  bears  a 
strong similarity to photography. And it can be verified by dissec-
tion that the images it produces resemble the object under study 
and thus are not fabricated by a model.

Simulations are a very popular tool in astronomy. One reason 
for this is that it is impossible to carry out material experiments 
with stars and galaxies. However, the fact that it is impossible to 
study, say, the collision of galaxies experimentally does not turn a 
simulation of the collision of galaxies into an experimental proce-
dure, other than in a purely metaphorical sense of the word “ex-
perimental.” If we consider such examples, then these are not ex-
perimental  measurements  according  to  our  criteria,  because 
clearly the input data is not empirical, but is model data about 
hypothetical galaxies (Struck, 1997). In this case, the simulation 
would not even be classified as a hybrid in the first place. 

There are of course other kinds of simulations in astronomy 
that make heavy use of empirical input data, like the Bolshoi sim-
ulation (HIPACC, 2011). The Bolshoi simulation is a simulation 
by our criteria because the output of the simulation (evolution of 
the universe or, rather, of regions of the universe) is not a cause of 
the initial state nor is it located at the same time and place. The 
classification of the Bolshoi simulation as a simulation and not as 
an experiment is in agreement with the self-ascription by its cre-
ators, and it is intuitively plausible that it is a simulation and not 
an experiment. 

This brief survey of examples indicates that our criteria for dis-
tinguishing experimental measurements that involve the computa-
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tional refinement of data from simulations based on empirical in-
put data can account for many prominent examples of advanced 
science. This in turn suggests that the criteria articulate at least 
an implicit standing convention for distinguishing data-based sim-
ulations  from empirical  measurements.  It  still  leaves  open  the 
philosophical question whether and how this practice can be justi-
fied epistemologically. However, this answer to the problem of hy-
brids builds on a structural feature that is already present in tra-
ditional  measurement instruments  and that has  been described 
here as the measuring the cause by its effects pattern. Therefore, I 
conjecture that the problem of justifying it is either exactly the 
same or very similar to that of justifying traditional measurement 
or observation methods which rely on this pattern. For example, 
we say we measure the temperature, when in fact we are measur-
ing the extension of the volume of a liquid in a thermometer and 
infer the temperature with the help of a scale. Still, we consider 
the temperature value as empirical data and I believe we do so 
because the kind of inference we make adheres to the two condi-
tions stated above.

Summary and Open Questions

In this chapter I have argued that experiments and simulations 
and, by the same token, empirical measurements and theoretical 
calculations are clearly separate and well-distinguished categories. 
I have defended this distinction against what appears to me to be 
a strong tendency towards the contrary in the newer philosophy of 
simulation  literature.  However,  the  problem of  hybrid  methods 
(i.e., methods that combine empirical measurement of data with 
the computational processing of this data) raises conceptual prob-
lems that are not so easily solved. There are different possible ap-
proaches to solving these problems. In my opinion, the best way 
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to frame these problems is by asking the question: what distin-
guishes a computer simulation based on empirical input data from 
an empirical measurement that involves the computational refine-
ment of data? My answer consisted in transferring a typical of 
pattern of traditional  measurement methods to the case of hy-
brids.

Several questions remain open, however. First, as the approach 
proposed by me is not the only possible or promising approach, it 
can still  turn  out that  other  approaches  work better.  Alterna-
tively, it could turn out that no universal answer can be given, 
but only different answers for different subject areas. For the area 
of economic simulations, in particular, the approach proposed by 
Sebastian  Zacharias  and  Moritz  Lenel  appears  to  be  the  best 
suited and promising.

However, there are also other open questions. The definition of 
hybrids that I have used more or less silently assumes that the 
output data really is computed from the input data and not ig-
nored or  dropped or  the  influence of  the  empirical  component 
changing over time. However, plausible cases where this does not 
hold can at least be imagined: imagine, for example, a control de-
vice that regulates a machine based on data it receives from sen-
sors. Let us assume that since the sensors tend to be unreliable 
from time to time, the regulatory device runs a simulation of the 
machine alongside the sensors. Whenever some kind of plausibility 
test shows that the sensors have delivered unreliable data, the ma-
chine switches  to  the simulation.  Otherwise,  it  uses  the  sensor 
data as input and updates the simulation with the measured state 
of the machine. While it is not possible to tell whether the data 
produced by the device is empirical or not, this case turns out to 
be rather unproblematic upon closer inspection. For lack of an-
other word, we could describe the data produced by this device as 
potentially empirical data. Now regarding the epistemic potential 
of this data, it is clear that this data can only be used in those 
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contexts  where  in  principle  simulation  data  also  would  suffice 
(provided it is accurate enough), but not in those contexts, like 
empirical theory testing or model validation, where real empirical 
data is indispensable. 

Similarly unproblematic  is  the case  where  a switch between 
empirical and simulation sources of input data does not occur, but 
where empirical and simulation sources are merged. This case is 
already covered by the theory of hybrids proposed here: as long 
the empirical data source has any significant influence on the com-
puted output, the procedure can be classified as empirical data. In 
principle, it is suitable for all purposes for which real empirical 
data is needed. Of course, the details still matter. If a theory is to 
be tested, then the validity of any model that is required for pro-
ducing (or better, revealing) the empirical data against which it is 
to be tested must be independent from the theory. This must of 
course already be considered in the case of conventional measure-
ments. It does not constitute a novel or singular problem of com-
putationally enhanced measurement techniques.
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