
CoopSim -
A Computer Simulation of the Evolution of

Cooperation
User’s Manual

Eckhart Arnold

September, 6th 2015

Contents

1 Introduction 1

2 Aknowledgements 2

3 License 2

4 Installation 3
4.1 System Requirements . 3
4.2 Installing CoopSim . 3
4.3 Running ”CoopSim” . 3

5 First Steps - A guided tour through CoopSim 3
5.1 Starting a predefined simulation 3
5.2 Defining a new simulation . 7
5.3 Programming a new strategy 8

6 Comprehensive Overview 10
6.1 File Menu . 10

6.1.1 New . 10
6.1.2 Open . 10
6.1.3 Save . 10
6.1.4 Save As . 10
6.1.5 Exit . 11

1

6.2 Edit Menu . 11
6.2.1 Copy Page . 11
6.2.2 Save Page As . 11

6.3 Simulation Menu . 11
6.3.1 New Simulation . 11
6.3.2 Edit Simulation . 12
6.3.3 The Simulation Setups 12
6.3.4 Remove Models . 12

6.4 Help Menu . 12
6.4.1 Help . 12
6.4.2 License . 12
6.4.3 About . 13

7 Advanced Topics 13
7.1 Technical notes on the dynamical model 13
7.2 Programming user strategies 13

7.2.1 Preface . 13
7.2.2 The Strategy class . 14

7.3 Defining user setups . 14

8 Further Reading 16

1 Introduction

CoopSim is a computer simulation of the reiterated prisoner’s dilemma. The
reiterated prisoner’s dilemma is a model for many (but not for all) coopera-
tion dilemmas discussed in social sciences. It is also useful as a model for the
evolution of altruistic behaviour in biology. The computer program CoopSim
has been written for use in an undergraduate course on the “Evolution of
Cooperation”. Its purpose is mainly educational.

The reiterated prisoner’s dilemma and its simulation on the computer is
discussed in a very understandable form in the book “The Evolution of Co-
operation” by Robert Axelrod. Therefore, it will not be explained here any
more (see section “Further Reading” for some recommendable books on the
topic). A basic knowledge of what the prisoner’s dilemma is and what it
has got to do with altruism and cooperation is presupposed in the follow-
ing. The program CoopSim is largely based on the description of Axelrod’s
book. However, the whole program has been written from scratch without
taking recourse to Axelrod’s original Fortran program. I did so, because I
wanted the program code to be readable enough so that students with some

2

programming knowledge might be encouraged to extend the program and to
implement strategies of their own. Also, I wanted the simulation to have a
nice user interface so that I could do “life” simulations under different bound-
ary conditions in class.

2 Aknowledgements

CoopSim is based on the description of a computer tournament in Robert
Axelrod’s book “The Evolution of Cooperation”. The nomenclature (“com-
puter tournament”, “ecological simulation”) has been taken from this book.
Some of the strategies built into CoopSim are (sometimes only loosely) based
on strategies with the same name described in Axelrods book.

I would also like to thank the following people for contributing strategies
of their own: Alex Mainzer, Björn van den Bruck, Christian Erlen, Stefan
Pennartz, Sven Sommer, Paul Boehm.

Finally, I would like to thank the initiators, makers and contributers
to the Python programming language (www.python.org www.python.org)
and the wxWidgets GUI-Toolkit (www.wxwidgets.org www.wxwidgets.org;
www.wxpython.org www.wxpython.org). Python and wxWidgets are open
source software packages without which the making of CoopSim would not
have been possible in this form.

3 License

The MIT License (MIT)
Copyright (c) 2004 Eckhart Arnold (eckhart arnold@yahoo.de,

www.eckhartarnold.de)
Permission is hereby granted, free of charge, to any person obtaining a

copy of this software and associated documentation files (the ”Software”),
to deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY
OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIM-
ITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT

3

www.python.org
www.wxwidgets.org
www.wxpython.org

SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

4 Installation

4.1 System Requirements

Hardware Requirements:

• AMD Athlon or Pentium III System, 1 Ghz or above (otherwise Coop-
Sim might run pretty slow)

• 128 MB or more of memory

Software Requirements:

• Linux or Windows 98/XP Operating System

• Python 2.3 or above (www.python.org)

• wxPython 2.4 or above (www.wxpython.org)

4.2 Installing CoopSim

To install and successfully run CoopSim you need to have Python version 2.3
or above and wxPython version 2.4 or above installed on your System. You
can download the installation packages from the websites mentioned above.
CoopSim runs under Windows, Linux and potentially under MacOS as well,
but it has only been tested under Windows and Linux. In order to install
CoopSim you only need to unpack the zip archive “CoopSim.zip” anywhere
on your hard disk.

4.3 Running ”CoopSim”

To run CoopSim, you have to start the executable python file “CoopSim.py”
in the main installation directory either by double clicking or by changing to
the CoopSim directory and entering “python CoopSim.py” at the command
line.

4

www.python.org
www.wxpython.org

5 First Steps - A guided tour through Coop-

Sim

5.1 Starting a predefined simulation

After successfully starting CoopSim you should see an application Window
like this:

In the beginning the screen is empty, of course. You will notice four note-
book pages named: Tournament, Ecological Simulation, Simplex Diagram
and User Defined Strategies. The purpose of these pages will be explained
later. First, we will just start the simulation Simple Example. This simula-
tion is preselected when the program starts up (you can see which simulation
is active and which simulations are available in the Simulation menu), so it is
just enough to click the Continue Simulation button to start the simulation.
This is the button with the blue arrow pointing to the right. It is the second
button from the left in the button row under the menu. After a short time of
calculating the result of the tournament should appear on the Tournament
page:

5

The tournament page displays the following information:

1. The strategies that took part in the tournament.

2. Then ranking of the strategies.

3. The outcome of each single match of a pair of strategies as well as the
first and last 50 moves of the players, where 0 indicates a defection and
a 1 a cooperative move.

4. The ranking of the strategies in the ecological simulation after a certain
number of generations.

You can scroll the contents of the text window using the slider on the right
side in order to see all the information. As you can see from the tournament
log, the simulation Simple Example is a tournament of three strategies only:
GRIM, TITFORTAT and RANDOM. Among these three strategies GRIM
emerges as the clear winner.

Now, let us have a look at the other notebook pages. Select the page
Ecological Simulation in order to view the graph of the ecological simulation.
The graph shows the population dynamics of the strategies in the tourna-
ment, assuming that the fitness of a strategy is determined by its score in
the tournament. It should look like this:

6

If you wonder how the development is going to continue after the 50th
generation (you probably don’t when the graph is as simple as in this case,
but sometimes it takes more generations until a clear result crystalizes out),
you can click on the blue arrow button again to let the simulation continue.
You can do this as often as you like. (To go back to the first 50 generations,
just restart the simulation from the Simulation menu.)

Now suppose you would like to save the graph (maybe, because you
are just about to write a paper on cooperation in the reiterated prisoner’s
dilemma, for which some graphical illustrations might be useful). You can
do so by selecting Save Page As from the Edit menu or by clicking the Save
Page button in the toolbar (somewhere in the middle, not to be confused
with the Save button which saves the whole setup of simulations!). A dialog
box will appear where you can the select a directory and enter a filename for
the graph:

This does not only work with the Ecological Simulation page but with all
other pages as well. So, whenever you want to save some content you are
seeing on the screen, just select Save Page As in the Edit menu and you will
be prompted to save the content of the currently selected page. Alternatively,
you can select Copy Page in the Edit menu (or click the Copy Page button

7

in the toolbar) to copy the content of the selected page to the clipboard.
You can then easily insert the content into another application, say a word
processor, by pressing Crtl-V within this application.

Apart from the graph of the ecological simulation, which usually starts
with a uniformly distributed population, you may also want to know how the
three strategies fare in the ecological simulation when they are given differ-
ent population shares in the beginning. For three strategies the population
dynamics can be visualized as a simplex diagram. (If there are more than
three strategies in the simulation then the three strongest strategies are de-
picted.) On a simplex diagram each point within the simplex represents a
certain population distribution. The visualization of the population dynam-
ics looks very similar to a vector field in physics. But, bear in mind that
population dynamics is a discrete process, while vector fields in physics are
usually continuous. (For a more comprehensive explanation of simplex dia-
grams, look into the literature on evolutionary game theory, as for example
Maynard-Smith’s “Evolution and the Theory of Games”). If you select the
Simplex Diagram page you should see a picture like this:

The arrows indicate the direction of the “field” (i.e. the direction the
population drifts to at a certain point). The length of the arrows indicates
the strength of the drift. Big arrows mean a strong drift while small arrows
indicate an only slow population drift.

5.2 Defining a new simulation

Now, you might think, what would happen if we add another strategy to our
tournament? Nothing is easier than that! In order to do so, we have to create
a new simulation setup. This can be done by selecting New Simulation in the

8

Simulation menu or by clicking the New Simulation button in the toolbar (the
button before the one with the wrench symbol). Selecting New Simulation
opens a dialog where you can define a new simulation setup based on the
current simulation setup. The dialog looks like this:

The dialog allows you to select the strategies you want to let take part in
the tournament. You can see the list of available strategies on the left hand
side. On the right hand side you can see the strategies that will play in the
tournament.

Let us try to add the strategy TESTER to our tournament. In order to do
so, select TESTER with a mouse click in the list box on the left hand side.
(Hint: You may have to scroll the list down a little bit, before TESTER
appears.) Notice that when you select a strategy, an explanation of the
strategy appears in the text box below. When you have selected TESTER,
click on the button“>>”in the middle of the dialog box. This should transfer
TESTER from the list of available strategies to the list of selected strategies.

9

Finally you should enter a name for your new simulation setup in the text
entry widget at the top of the dialog box. Take “New Example”, if you do
not know what to enter. Now click O.K. to see what happens. Well, since
now there are four strategies in the tournament, there won’t be a simplex
diagram any more. Select the page Ecological Simulation in order to see what
has changed. Obviously, this time TITFORTAT has come out at the top of
the strategies. Although TESTER has not been very successful itself, it has
changed the overall results dramatically.

5.3 Programming a new strategy

The last step of this introductory walkthrough will show you how to add your
own strategies to CoopSim, if you know the basics of the Python programming
language. For the sake of brevity, I will only explain how to activate a custom
strategy that has already been coded but deactivated by comment signs. In
order to program your own strategy you have to change to the User Defined
Strategies page in the main window. The page contains a simple text editor,
where you can enter python program code:

10

As you can see, there is already quite a bit of program code there. This
program code has been inserted for explanatory purposes. Every line starts
with a “#”, which is a token for the python interpreter to treat the line as
a comment and not to execute it. Try to locate the class definition of class
LesserTFT. Reactivate this strategy by removing the comment sign in front
of the class definition as well as the following single space character (this
is important) so that the statement “class LesserTFT(Strategy):” starts in
the very first column. Do the same for the following lines up to the line
where the class LesserTFT is instantiated. This is line that reads “lesser tft
= LesserTFT()”. Remember that indentation has syntactical significance in
Python, so beware of inadvertently changing the indentation while removing
the comment signs and the following space character.

Now select Edit Simulation from the Simulation menu (or click on the
wrench symbol in the toolbar). If no errors have occurred in the program code

11

you will now find a new strategy LesserTFT among the available strategies
in the simulation setup dialog box. If you receive an error message, you may
have forgotten to delete a single trailing space after the comment sign “#” in
one or more lines.

6 Comprehensive Overview

This Chapter of the manual gives a comprehensive overview over all menu
commands of the CoopSim application.

6.1 File Menu

6.1.1 New

Resets the application to its startup state. This means that all simulation
setups and custom strategies will be deleted. Usually there is not much need
to select New at all, except when you get lost.

6.1.2 Open

Opens a previously saved state, including all simulation setups as well as any
user defined strategies or setups. All previous simulation setups will be lost.
(There is - at the moment - no way of merging different simulation setups.)

6.1.3 Save

Saves the full application state in a file, including all simulation setups and
and any program code that has been entered in the User Defined Strategies
page.

Warning: The save files may not be interchangeable between different
versions (including subversions) of CoopSim! Loading a save file from a
different version of CoopSim may cause CoopSim to crash!

If you want to save program code from the User Defined Strategies page,
the best idea is to copy and paste it to a text editor and save it as a text file.

6.1.4 Save As

Promts for a filename and then saves the full application state in a file,
including all simulation setups and and any program code that has been
entered on the User Defined Strategies page.

12

Warning: The save files may not be interchangeable between different
versions (including subversions) of CoopSim! Loading a save file from a
different version of CoopSim may cause CoopSim to crash!

If you want to save program code from the User Defined Strategies page,
the best idea is to copy and paste it to a text editor and save it as a text file.

6.1.5 Exit

Quits the application.

6.2 Edit Menu

As you may have noticed, there is no “Paste” entry in the Edit menu. If you
want to add some program code from another application, say a python edi-
tor, to your own custom strategies on the User Defined Strategies page, you
can access the usual cut, copy and paste functions on this page via keyboard
with crtl-x, crtl-c, crtl-v respectively.

6.2.1 Copy Page

Copies the content of the currently visible page to the clipboard. This can
either be an image (pages Ecological Simulation and Simplex Diagram) or
HTML file (page Tournament) or plain ASCII text (page User Defined Strate-
gies).

6.2.2 Save Page As

Saves the content of the currently visible page to a file. This can either be
an image (pages Ecological Simulation and Simplex Diagram) or plain ASCII
text (pages Tournament and User Defined Strategies). Currently the only
supported file format for graphical images is the png format.

6.3 Simulation Menu

6.3.1 New Simulation

Invokes the setup dialog for setting up a new simulation. In the setup-dialog
the set of strategies that take part in the tournament can be selected, and
the payoff parameters T (tempation of cheating), R (reward for cooperation),
P (punishment for mutual non cooperation), S (sucker’s payoff) and the
parameters Noise, Correlation, Background noise can be adjusted. The latter
three of these parameters can be assigned percentage values from 0 to 100

13

percent. Noise specifies the in game noise that is a random probability with
which the move of a player is turned into its opposite. Correlation determines
how often players meet with players of their own kind. It ranges from totally
random (= 0 %) to the closest possible correlation when only players of the
same type meet (= 100 %). (Try a tournament between DOVE and HAWK
and change this parameter in steps of 10 % from 0 % to 50 %. What can
you observe?) Background noise specifies an evolutionary background noise
meaning that reproduction does depend on the fitness plus/minus a certain
random factor.

6.3.2 Edit Simulation

Same as New Simulation, only that the current simulation setup is manipu-
lated instead of creating a new simulation setup. Simulation setups that have
been programmed on the User Defined Strategies page can not be edited. You
will have to create a new simulation setup instead. In this case the param-
eters population and mutators will be reset to their default values in order
to avoid incongruous setup data. (Setup data would become incongruous if
it specifies the mutation of a strategy to another strategy that has manually
been removed from the setup).

6.3.3 The Simulation Setups

Following in the Edit menu is a list of simulation setups. Whenever you
define a new simulation setup it appears in this list. The currently selected
simulation setup is marked. You can run or restart a simulation by selecting
it from this menu.

6.3.4 Remove Models

Opens a dialog that allows you to remove setups that you do not need any
more from the Simulation menu.

6.4 Help Menu

6.4.1 Help

Shows this manual as HTML text in a browser window.

6.4.2 License

Shows the license agreement for this software. This software is open source
under the GNU Public License.

14

6.4.3 About

Tells you who wrote this program.

7 Advanced Topics

7.1 Technical notes on the dynamical model

Population dynamics crucially depends on two factors: How fitness is trans-
formed into a reproduction rate (assuming that the transformation is al-
ways monotonous, this still leaves open quite a number of possibilities), and
whether or when species die out. The model used in CoopSim uses population
shares rather than an integer number of individuals for each species (strat-
egy). This means that species never die out, even though their population
share might become arbitrarily small. The reproduction rate is determined
by the score a strategy gains in the tournament divided by the average score.
Thus the reproduction rate does depend on the payoff parameters. Both
assumptions are to a certain degree arbitrary.

Evolutionary noise (which can be adjusted via the Background noise pa-
rameter in the simulation setup dialog) is modeled as random disturbance on
the reproduction rate (not on the population share).

7.2 Programming user strategies

7.2.1 Preface

There are two ways of adding user strategies to CoopSim: Either by entering
them on the User Defined Strategies page when the application is running or
by writing them directly to the Strategies.py module of the program code.
Since CoopSim is open source software and thus comes with the complete
source code you can easily do so. Except for experimenting, the latter method
of adding your own strategies directly to the program code is probably the
better one, because entering strategies on the User Defined Strategies page is
more error prone and can quickly get frustrating. Also, changing the module
Strategies.py can be done with a real python editor with syntax highlighting,
class browser and other comforts. On the other hand, you should only change
Strategies.py if you really know what you are doing, or otherwise CoopSim
might not run any more.

15

7.2.2 The Strategy class

Any strategy in the game must be derived from class Strategies.Strategy.
This class defines the two methods firstMove(self) and nextMove(self, my-
Moves, opMoves). Both methods must return either 0 or 1, where 0 means
“defection” and 1 stands for “cooperation”. firstMove does not take any pa-
rameters except “self”, while nextMove gets the list of its own moves during
the previous rounds of the current match as well as a list of its opponents
previous moves. Both lists are list of zeros and ones. Implementing your own
user strategies is pretty easy now: Simply derive a class from class Strate-
gies.Strategy and define the methods firstMove and nextMove, nothing else
is needed, neither a constructor, nor is it necessary to worry about a name
for the strategy, because the class name is automatically used as the strate-
gies’ name. All state saving variables of your class must be reset in method
firstmove! This is necessary, because the same strategy object is used in all
matches of the tournament. Here is a simple example of a custom strategy
class:

class LesserTFT(Strategy):

"""Retailiate only when not having retailiated in

the last round already.

"""

def firstMove(self):

return 1 # start friendly

def nextMove(self, myMoves, opMoves):

if opMoves[-1] == 0 and myMoves[-1] != 0:

return 0 # retailiate

else:

return 1 # cooperate

Do not forget to instantiate your class, otherwise

it will not appear among the available strategies!

lesser_tft = LesserTFT()

7.3 Defining user setups

There are many more parameters that determine a simulation than can be
edited through the simulation setup dialog. To change these parameters,
thereby gaining access to a much wider range of possible simulation scenarios,
it is necessary to define the simulation setup manually on the User Defined
Strategies page.

16

All parameters that determine a simulation’s behaviour are defined in an
object of class Simulation.SimSetup. To define a simulation setup, it suffices
to instantiate this class with the needed parameters. Here is an explanation
of the parameters the constructor of the SimSetup class takes:

name = string: name of the model

strategyList = list of Strategy objects: the list of the strategies

population = tuple: population share for each strategy

correlation = float [0.0-1.0]: correlation factor

gameNoise = float [0.0-1.0]: in game noise

noise = float [0.0-1.0]: evolutionary background noise

iterations = int: number of iterations for one match

samples = int: number of sample matches to take (only useful for

randomizing strategies)

payoff = tuple of floats: payoff tuple (T, R, P, S)

demes = DemeDescriptor: defines the deme structure of the

population or ‘None’ if there is only one deme

mutators = list of Mutator objects: description of possible

mutation (or degeneration resp.) of strategies during

the course of the evolutionary development.

cachedPM = cached payoff matrix

cachedLog = cached tournament log string

The most interesting use for programmed setups is setups with mutators.
Mutators describe a genetic drift of certain strategies into another type of
strategy. For example one could imagine a certain percentage of TITFOR-
TAT players degenerating into DOVE every generation, because they weren’t
really able to understand the principle of TITFORTAT. The assumption of
degeneration has great consequences for the topics of evolutionary stability
and the like. Here is an example of a simulation setup with a non uniform
population consisting of the strategies GRIM, DOVE and TESTER, where
GRIM degenerates to DOVE at a rate of one percent per generation. (Try
this one out and let the ecological simulation continue for at least 400 gen-
erations. What can you observe?)

custom_setup = SimSetup(name = "Grim => Dove, Tester",

strategyList = [Grim(), Dove(), Tester()],

population = (0.8, 0.01, 0.19),

mutators = [Mutator(0,1,0.01)])

17

8 Further Reading

For those who would like to learn more about the game theoretical foundation
of CoopSim, here are a few good books on this topic:

Axelrod, Robert (1984): Die Evolution der Kooperation, Oldenbourg,
Mnchen (5 Aufl. 2000; engl. Original 1984).

Axelrod, Robert (1997): The Complexity of Cooperation. Agent-
Based Models of Competition and Collaboration, Princeton University Press,
Princeton.

Binmore, Ken / Samuelson, Larry (1992): Evolutionary Stability in
Repeated Games Played by finite Automata, in: Journal of Economic Theory
57 (2/1992), 278-305.

Binmore, Ken (1994): Game Theory and the Social Contract I. Playing
Fair, MIT Press, Cambridge (Massachusetts), London (England) (4. Nach-
druck 2000).

Binmore, Ken (1998): Game Theory and the Social Contract II. Just
Playing, MIT Press, Cambridge (Massachusetts), London (England).

Maynard Smith, John (1982): Evolution and the Theory of Games,
Cambridge Univ. Press, Cambridge (8. Aufl. 2000).

Schuessler, Rudolf (1990): Kooperation unter Egoisten: vier Dilemmata,
R.Oldenbourg Verlag, Muenchen (2.Aufl. 1997)

After having occupied myself with computer simulations of this type for a
longer time, my own oppinion about the scientific value and particularly the
explanatory power of this brand of simulations has become very critical. If
curious, you may want to read some of my papers on this topic:

How Models Fail. A Critical Look at the History of Computer Simulations of
the Evolution of Cooperation, in: Philosophical Studies (forthcoming 2015)

What’s wrong with social simulations?, in: The Monist 2014 (97,3), 361-379,
DOI: 10.5840/monist201497323

Simulation Models of the Evolution of Cooperation as Proofs of Logical Pos-
sibilities. How Useful Are They?, in: Etica & Politica / Ethics & Politics,
XV, 2013, 2, pp. 101-138

18

http://www.eckhartarnold.de/papers/2015_How_Models_Fail/How_models_fail.html
http://www.eckhartarnold.de/papers/2015_How_Models_Fail/How_models_fail.html
http://www.eckhartarnold.de/papers/2014_Social_Simulations/Whats_wrong_with_social_simulations.html
http://www.eckhartarnold.de/papers/2014_Social_Simulations/Whats_wrong_with_social_simulations.html
http://www.eckhartarnold.de/papers/2013_Simulations_as_Logical_Possibilities/Arnold_2013_Simulations_as_Proofs_of_Logical_Possibilities.pdf
http://www.eckhartarnold.de/papers/2013_Simulations_as_Logical_Possibilities/Arnold_2013_Simulations_as_Proofs_of_Logical_Possibilities.pdf
http://www.eckhartarnold.de/papers/2013_Simulations_as_Logical_Possibilities/Arnold_2013_Simulations_as_Proofs_of_Logical_Possibilities.pdf

	1 Introduction
	2 Aknowledgements
	3 License
	4 Installation
	4.1 System Requirements
	4.2 Installing CoopSim
	4.3 Running ''CoopSim''

	5 First Steps - A guided tour through CoopSim
	5.1 Starting a predefined simulation
	5.2 Defining a new simulation
	5.3 Programming a new strategy

	6 Comprehensive Overview
	6.1 File Menu
	6.1.1 New
	6.1.2 Open
	6.1.3 Save
	6.1.4 Save As
	6.1.5 Exit

	6.2 Edit Menu
	6.2.1 Copy Page
	6.2.2 Save Page As

	6.3 Simulation Menu
	6.3.1 New Simulation
	6.3.2 Edit Simulation
	6.3.3 The Simulation Setups
	6.3.4 Remove Models

	6.4 Help Menu
	6.4.1 Help
	6.4.2 License
	6.4.3 About

	7 Advanced Topics
	7.1 Technical notes on the dynamical model
	7.2 Programming user strategies
	7.2.1 Preface
	7.2.2 The Strategy class

	7.3 Defining user setups

	8 Further Reading

